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Neka bude borba neprestana,
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Njegos, Gorski vijenac
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T192 > < T193 :: teorem 193 je dual teorema 192.
Odnosno, iz dokaza teorema 192 dobiva se dokaz teo-
rema 193 tako, da se svaki m-simbol zamjeni dualnim
m-simbolom, a sve ostalo ostavi nepromjenjeno.

X« —»Y I umjesto X, kadgod to ne moze dovesti
do zabune, pisat de se Y.
(Primjer upotrebe: konvencija 6, str. 199).
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kim = M je djeljivo sa k.

11"
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Exd Bt t.
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Prvi dio

SISTEM M

U poCetku bjeSe rijecC
Ev. po lvanu

1.0. UVOD

1.0. 1. m-RIJECI KAO REPREZENTANTI m-BROJEVA

Sistem M je formalizirana teorija m-brojeva u kojoj kao repre-
zentanti m-brojeva dolaze m-rijeCi. m-RijeCi su rijeci TfTormira-
ne dvoelementnim alfabetom, pretpostavljajuci pri tom da je "ri-
je€” u smislu linearne kombinacije(konkatenacije, nadovezivanja)
konacnog broja simbola, iIntuitivno jasan pojam. m-Rije¢i su pri-
rodni reprezentanti m-brojeva, jer im na najjednostavniji nacin
odraZzavaju svojstva i strukturu. Gledaju¢i u m-rijeCima isku-
stveno poznate i sadrzajne objekte, dat ¢e se u ovoj glavi, pre-
ko intuitivno jasnih pojmova, kao sto su npr. poCetna slova, broj

slova i1 sli¢nih, sadrzaj glavnim formalnim pojmovima sistema M.

DEFINICIJA 01
m-RijeC je X, ako 1 samo ako x je konaCna, neprazna rijeC formi-
rana slovima "a" 1 ”b” 1 broj slova u x je paran.

PRIMJERI
1. m-RijeCi su: aa, ab, ba, bb, saaaaa, abbaabbbabba, bbba i1td.

2. Nisu m-rijeCi: a, b, aa®©, abb, bab, bbbbbbb, abababbaaaa itd.
DEFINICIJA 02
M je skup m-rijecCi.

DEFINICIJA 03

A =a 1 D = hb.
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PRIMJERI
3. AB = aabb. 4. BBB = bbbbbb. 5- bABAb = baabbaab.

DEFINICIJA 04
Za svako x,y€M, "nadoveza od x 1 yM (simb. X A y)» odnosno
My nadovezano na xM jednako je xy.

PRIMJERI
6. AAB = AB. 8. BA (BA B)=BBB. 10. ba Aab = bAb.

7. BA A= BA. 9, AA(BAA) = ABA.

DEFINICIJA 05

Za svako x,yeM, Hx je ekvivalentno sa y" (simb. x 8 y), ako 1
samo ako X 1 y su identic¢ki jednaki, i1li za svako s,t€{a,b} ,
y rezultira iz x supstitucijom "tst” sa "t" 1 obrnuto.

PRIMJERI
11. aaaa 8 aa. 13« BB 8 B. 15. abab 8ab. 17. bbab 8B.

12. aaba 8 aa. 14. aaab 8 ab. 16. baba 8ba. 18. bbbb 8B.
19. AAAAABA 8 ABA. 20. baAAAAB 8 B. 21. BBBabBB 8 fah.

DEFINICIJA 06
Za svako s,t€{a,b}, "s 1 t' su dualni (simb. 1 = t), ako 1 sa-
mo ako s 1t nisu jednaka slova.

PRIMJERI
2. a-b. 23* B=a. 24. a-—-a. 25* B —bh.

1.0.2. ZAVRSECI I LJUSKA m-RI1JECI

DEFINICIJA 07
Za svako xeM» pocCetak (simb. 1(X)), odnosno lijevi zavrSetak od

x je slovo kojim x zapocCinje.

PRIMJERI
26. 1(@a) = 1(A) = a. 27. I(@a) =a. 28. 1I(ABA) = a.
29. 1(B) = I(bb)= b. 30. I(ba) = b.

DEFINICIJA 08
Za svako x€M, svrSetak (simb. d(x)), odnosno desni zavrSetak od

x je slovo kojim x zavr3ava.



PRIMJERI
31. d(A) = a. 33. d(ab)
32. d(B) » b. 34. d(ba)

b. 35. d(ABAAB) * b.
a. 36. d(bABa) = a.

DEFINICIJA 09

Za svako X€M, ljuska od x (simb. q(x)) je m-rijeC koja rezultira

kad se svrSetak od x nadoveze na poCetak od x.

PRIMJERI
37. q(A) =A. 39. q(ab) =ab. 41. q(aBa) = A.
38. g(B) =B. 40. qg(ba) =ba. 42. q(ABAB) » ab.

1.0.3. SLJEDBENICI m-RIJECI

DEFINICIJA 010

Za svako xeM, lijevi sljedbenik od x (simb. Px) je ssx, ako I sa-

mo ako s je slovo dualno pocCetku od X.

DEFINICIJA 011
Za svako x€M, desni sljedbenik od x (simb. xP) jednak je xss,
i sano ako s Je slovo dualno svrSetku od X.

PRIMJERI
43. PA =BA. 45. Pab = bbab. 47. AP = AB. 49. ABBP = ABBA.
44. PB = AB. 46. Pba = aaba. 48. BP = BA. 50. BPPP = BABA.

51. abP=abaa. 53. bAbP= baabaa.
52. PPA= ABA. 54. baPPP = babbaabb. 55. PAABA = BAABA.

TEOREM 01
Za svako x,y€M, (xP)y 8 x(Py).

PRIMJERI

56. A(PA) = ABA = (AP)A. 57. A(PB) O AAB O AB O ABB 8 (AP)B.

58. ab(Pba) 8 abaaba 8 (abP)ba 8 A.
59. ab(Pab) 8 abbbab 8 abab O abaaab 8 (abP)ab 8 ab.
60. ba(Pba) 8 baaaba 8 baba 8 babbba 8 (baP)ba 8 ba.

DEFINICIJA 012

Za svako xeM, lijevi prethodnik od x (simb. P*Xx) jJe ssx, ako 1

samo ako s je slovo jednako pocCetku od x.

ako
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DEFINICIJA 015
Za svako xeM] desni prethodnik od x (simb. xP*) Je xss, ako 1 sa-
mo ako a Je slovo Jednako svrSetku od Xx.

PRIMJERI

61. PB O abB O ab. 62. P*ABA O baBA 0 BA. 65. P’ba = aBa
64. P"ab = bAb. 65. ABP” 0O A. 66. BAP” O B.
67. P’P"ab = aBAb . 68. abP’P» * aBAb. 69. PP’A = A.

70. P’P’P’ABAB 0 B. 71. baP*P = ba.

TEOREM 02
Za svako X,yEM>(xP,)y 9 x(P*y).

PRIMJERI
72. A(P°A) 0 (AP?)A 0 A. 75. A(P*B) 0 (AP»)B 0 ab.
74. abP*ba 0 abba.

1.0.4. DUAINE I KOMPLEMENTARNE m-RIJECI

DEFINICIJA 014
Za svako xeM, dual od x (simb. Dx ili xX) Je m-rijeC koja rezulti-
ra 1z X zamjenom svakog slova dualnim slovom.

PRIMJERI

75* Dabbaaa = A&aSbaaa = baabbb. 76. DA=B. 77.DB = A.

78. Dab = ba. 79. Dba=ab. 80. DABAA = BABB.
TEOREM 05

Za svako xeM, Dx 0 PxP* 9 P*xP.

PRIMJERI
81. PaaP* 0O bbaaab O bb 9 da. 82. P"baP O abbabb 0 ab 0 ba.

DEFINICIJA 015
Za svako xeM, komplement od x (simb. Kx) Je sxt, ako i samo ako

s Je slovo dualno poCetku od x 1 t Je slovo dualno svrSetku od x.

PRIMJERI
85. KA = bADb. 85. KbAb = abaaba 0 A. 87. Kba =abab 0 ab.
84. KB = aBa. 86. KaBa = babbab 9 B. 88. Kab =baba 9 ba.



1.0. 5. SERIJSKO 1 PARALELNO NADOVEZIVANJE m-RIJECI

DEFINICIJA 016
Za svako X,y€EM, serijska nadoveza od x 1 y (slmb. x ~y) je
m-rijeC koja rezultira iz x 1 y primjenom slijedec¢ih pravila
(pri Cemu x 1 y smiju biti 1 prazne rijecCi):

() x™MAy =Ax "Ny

(i) xB~ry = x yB
(if1) xA ™~ By = XxABy

(av) x 8 xr & yOoy™ —» X V¥y 8xM "Ny~

PRIMJERI

8. ANAB = AANB * AAB. 90. aBa ™ aBa 8 aBa ™ ABbaaBa 8

Aaba ~ BbaaBa 8 abaA ™ BbABa 8 aBaABbABa 8 aBABa.

91. ABA v BA = ABABA. 92. aBa ™ ba 0 abaA ™ bba 8 abaAbba 8 aBa.
95. AB ~ AB = AA~BB =AABB. 94. ab ™ ab 8 abbaB ™ aabaab 8
aaabba ™ baabbb 8 abbaaa ™ bbbaab 8 abbaaabbbaab 8 abAb.

95. ab ™~ ba 8 aBaAB w Bba 8 aB&A v BbaB 8 aBaABbaB 8 ab.

DEFINICIJA 017
Za svako x,yeM, paralelna nadoveza od x 1 y (simb. x *y) Jde
m-rijeC koja rezultira i1z x 1 Yy primjenom slijedeCih pravila
(pri Cemu X 1 y smiju biti 1 prazne rijecCi):

(1) X 0By =BXx «y

(i) XAy = xX”"NyA
(i) xB N Ay = XxBAy

(v) x8x1 & y8yl —» x”Ny 8x1ryn

PRIMJERI

9. BA « AB =B ™~ ABA * BABA. 97. AN A =AA. 98. B~ A= BA.
9. BAA A=B"™AA =BAA. 100. B ~ B =BB.

101. A * b 8 AabbA BAabB 8 bAabb * AabbA 8 BAabBAabBA 8 BA.

1.0. 6. KVAZI UREPENJE m-RIJECI

DEFINICIJA 018
Za svako x»y€EM» x r y, ako 1 samo ako poCetak od x ne dolazi al-
fabetski ranije od poCetka od y i1 svrSetak od x ne dolazi alfa -

betski i1za svrSetka od vy.
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PRIMJERI

102, ba r ba. 103« ba r A. 104. ba r B. 105. ba r ab.
106. A r A . 107. A r ab. 108. B r ab. 109. ab r AB.
110. AB r ab.

I. 0.7. KANONSKE m-RIJECI I NJIHOVA DULJINA

DEFINICIJA 019
Kanonska m-rije¢ je x, ako i samo ako x je m-rlje¢, koja u skupu
ekvivalentnih m-rije¢i ima minimalan broj slova.

TEOREM 04

Za svako xeM, x je kanonska m-rije¢, ako 1 samo ako x sadrzi sa-
mo jedno m-slovo 1l su joj svaka dva susjedna m-slova medusobno
dualna (m-slova su aa, bb, ab, ba, A 1 B).

PRIMJERI
111. aa, bb, A, b, ab, ba, AB, BA, APA, DAB, abba, baab, abbaab
i baabbaabbaab su kanonske m-rijecCi.

112. AA, BABB, baba i bbbb nisu kanonske m-rijeoi.

TEOREM 05
Ako su x 1 y kanonske m-rijecCi, onda x 8 y povlaCi x m y.

DEFINICIJA 020
Za svako xeM, kanonska forma od x je y, ako i samo ako y je ka-

nonska m-rijeC 1y 8 Xx.

PRIMJERI
113. Kanonska forma od AA je A.
114. Kanonska forma od babaab je baab.

DEFINICIJA 021

m. j--Slova su aa (resp.A) 1 bb (resp. B). mQ-Slova, odnosno
m-nule su ba 1 ab, pri Cemu se ba, resp. ab zove s-nula, resp.
p-nula. m-Jedinice su BA 1 AB, pri Cemu se BA, resp. AB zove

s-Jedinica, resp. p-jedinica.



DEFINICIJA 022

Za svako x€M, pozitivna m-rijeC jJe X, ako 1 samo ako kanonska
forma od x sadrzi bar jedno m™-slovo. Mpoz je skup pozitivnih
m-rijecCi.

DEFINICIJA 023
Za svako xeM, nepozltlvna m-rijeC je x, ako 1 samo ako kanonska
forma od x sadrzi bar jedno mo-slovo. Mnepoz Je skup nepozitiv-

nih m-rijecCi.

TEOREM 06
Za svako xeM, x je pozitivna m-rijeC i1li x Je nepozltlvna

m-rijeC,ali ne oboje«

DEFINICIJA 024
Za svako xeM, x je nenegatlvna m-rije¢, ako 1 samo ako x Je po-

zitivna m-rijeC ili x je m-nula. Mneneg Je skup nenegativnih
m-rijeci.

DEFINICIJA 025
Za svako xeM, x je negativna m-rijeC, ako 1 samo ako X nije ne-

negativna m-rijec« Jje skup negativnih m-rijeéi«

PRIMJERI

115* {AAA, bbaaaa, ABBAba, B, baB} c: Mpoz.
116« {ba, ab, baba, aBABa, abaBBB} Cl MnepQZ.
117* {AA, bbbaa, ba, ab, Bbababa } C Mngneg.
118. {aBa, bAb, aBAb, bABABABABa } C Mneg.

DEFINICIJA 026
Ako se a valuira sa O 1 b sa 1, onda za svako xeM, defekt od x

(simb« h(x)) jednako je valuaciji svrSetka od x manje valuacija
poCetka od x«

PRIMJERI
119. h(aa) = O« 120. h(BA) =0 - 1 =-1. 121. h(ab) = 1.
122. h(BAB)* 0. 123. h(ABBAB) = 1.
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DEFINICIJA 027
(i) Za svako xeMpQZ, s-duljina od x jednaka je broju s-jedini-
ca (BA) u kanonskoj formi od x.
(11) Za svako X€MnepOZ» s-duljina od x jednaka je negativnom
broju p-nula (ab) u kanonskoj formi od Xx.
(i11) s-duljina od x simboliCki se oznaCava sa @S(X),

DEFINICIJA 028
(i) Za svako x€Mpoz, p-duljina od x jednaka je broju p-jedini-
ca (AB) u kanonskoj formi od x.
(i1) Za svako X€EMnepOZ> P“Juljina od X jednaka je negativnom
broju s-nula (ba) u kanonskoj formi od X.
(i) p-duljina od x simbolicki se oznaCava sa Ap(X)-

DEFINICIJA 029
(1) Za svako x*MpOZ> o-duljina od x jednaka je broju m™-slova
u kanonskoj formi od Xx.
(i1) Za svako xeMnepOZ» o-duljina od x jednaka je 1-n, ako i
samo ako n je broj mO-slova u kanonskoj formi od Xx.
(i) o-duljina od x simboliCki se oznaCava sa A(X).

PRIMJERI

124 125

s-,p- 1 o-Duljina prvih osam, s-Jp- 1 o-Duljina prvih osam,
po rastucoj o-duljini, pozi- po padajucoj o-duljini, nepo-
tivnih m-rijeci zitivnih m-rijeci

X Xs(X) Xp X) A(X) X XB(X) Xp ) AX)

A 0 0 1 ab -1 0 0
B 0 0 1 ba 0 -1 0
AB 0 1 2 abba -1 -1 -1
BA 1 0] 2 baab -1 -1 -1
ABA 1 1 3 abbaab -2 -1 -2
BAB 1 1 3 baabba -1 -2 -2
ABAB 1 2 4 abbaabba -2 -2 -3
BABA 2 1 4 baabbaab -2 -2 -3
TEOREM 07

Za svako xcM, h(xX) = Ap(X) " *s(x)*



1.1.

UTEMELJENJE SISTEMA M

DEFINICIJA 1

(WeS)(*(W) = {(G*,(G,F)): G#eS & GeS

(FESFunkc(((W U G*} * (W u G#))» GH)
(e, tEW — » TF(s9HEC Tt (X, y€EC — » T(X,y>€0)

((HES ﬁ CG Sew f(s»D)EH) Tt
OC»YyEH —» FOGY)EH)) — » H = 0)

GH=GC U {z: (s€W & xeG) — » z = T(s,X)}D)
X,y,z€C# — » FT(F(X,y),z) = F(X,T(y,z)))

(r,s,teW - » (F(F(r,s),f(r,t)) * f(r,t) ft
T(f(r,e),f(t,8)) = f(r,s)))

((e,teW & Xx,y€G &
() = f(t,y) v f(x,t) = f(y,))) - » 8=1

((s,t&W & x,yeG ft f(x,f(s,t)) =Ff(y,f(e,t)) - »
=y v fX,f(s,D)) =x v T,.f(s,D)) =vVy)

((s,tEW ft x,y€6 & F(F(s, D) = F(F(S,1),y)) — »
=y v f(f(s,),x) =x v T(f(e,)fy) *y)

((p*r,stt€EW & x€G & f(x,x) =f(f(p,r),f(s,t))) —»
(x =f(p,t) & (p =8 v r =1)))}).

AKSIOM 1

(WeS

& k(W) < 2) —» (PIX)(XEHW)).

DEFINICIJA 2

(WM#=G* ft M=G ft A =f) «» ((G* (G,f))€ *({a,b})

k({a,b}) = 2).

(iiMSistem M) {a>bj = (M, A ).

ft
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D2,A1,D1 >---
TEOREM 1
*({a,b}) = {(Mt,(M,A D)} & M*eS & MCM* &

A€Ssurjekc(((,a»h} U M#) ~ (<a,b} U M*)}> M#)Y*

D2 >---
TEOREM 2

i a=nhb.

DEFINICIJE 3-4
3 (VX yEM*)(xy = X A y).

4 Q = {x: s,te{a,b} —» x = s A t}.

D3,D4 >---
TEOREM 3
@ = {aa, ab, ba, bb}.

T1,D01,D3,T3 >--—-
TEOREMI 4-12

4 0EM .

5 X,yEM — » XxyeM.
6 ((HeS & O£H & HGM & (Xy«:H xyeH)) — » H =M).
7 (VX,y,zeM* ) (x(yz) = (xXy)2).

8 (Yr,s,t€{a,bP)(@rsrt =rt & rsts = rs).

I
A
<
<

9 (-(Wp.r, s, t€{a,b}) (Vx,yeM) ((prx
Xrp = yte —» P=9)-

10 (YUEQQ(YX,YEM)(ux =uy — > (X =y v UX =X v uy =y))

11 (VueQd(Vx,yeM)(xu =yu —» (X=y Vv XU =X VvV wyu =Yy))

12 (Vp,r,s,t€{a,bP)(VXEM) (XX = prst -—
(x=pt & (=8 V r =1))).
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TEOREM 13

M€Q)(uu = u).

Dokaz

(1D ueQ Sup.
@ (@s,te{a,b}P)u = sbp) 1»T3
(@) uat = stat 2
(@) uu = St8t 3,2
(®G) uu = 8t 4,718

1,2,5 5-—-T13.

TEOREM 14
(Vp,r,a,te{a,bPD(pr =st -> p=a & r = t).

Dokaz

@ p,r,e, te{a,b} & pr = st Sup.
(@ prrr = attt 1,T8
@G p=a & r=t 2,T9
1,3 >---Ti4.

DEFINICIJA 5
(e, te{a,bP(G =t *» 4ds = t).

D5,T2 >--- T15,T16.

TEOREM 15
a = b.

TEOREM 16
b = a.

D5,T15,T16 >--
TEOREM 17
(Vse{a,b}p)d = e).

DEFINICIJA 6
A = aa.

DEFINICIJA 7
B = bb.

DEFINICIJA 8
fin = {x: aefa,b} & x = ss}.
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D6-D8 >---
TEOREM 18
Qt = {aa,bb} = {A,B}.

DEFINICIJA 9
Qq = {x: sef{a,b} & Xx = si}.

D9»T15,T16 >---
TEOREM 19
fio = {ab,ba}-

T3,T18, T19 5-—-
TEOREM 20

Q Uy =Q ft QN Q =0.

1.2. OPERATORI 1ZLJUSTEN JA

1.2.1. ZAVRSECI m-BROJA

TEOREM 21
(VxeM)(SU 8€{a,b})(ssx = X).
Dokaz
@ R Sup.
@ (STs, te{a,b} )(u = at) 1,D4
(@) ssu * ssst 2
(4)(VubQ) (3se{a,b}P)(ssu = u). 1,2,3»T8
B) 0 = {x: xEM & (ffsef{a,b})(ssx = x)}. Def.
(6)QCO 4,5
(M xeG & y€0 Sup.
(8) (6Ts€{a,b} )(ssx = x) 7,5
(9 (ssx)y * xy 8, Tl
(10) ss(xy) = xy 9, T7
(11) x,yeG xyeG 5,7,10
(12) G =M. 5,6,11,T6
(A3) (Vx6M) (eB€ {a,b} )(ssx = X). 5,12
(14) (3xeM)(3s,t€{a,b})(ssx = x ft ttx = X) Sup.
(15) S8X = ttx 14
(16) s =t 15,19

A7 (vxeM)(SUse{a,b}P)(ssx = x). Q.E.D. 13,14,16
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DEFINICIJA 10
WxeM))(I(X) = s «» se{a,b} & aax * x)

TEOREM 72

msur/jekecN*

Dokaz

(1) DIO,T21
(2 aa = aaaa & bb * bbbb T8

@ I(@a) =a & Ib) =0b 2,DI0
@ {a,b} C Adom(l) 3, T4
1,4, >---T22.

DIO,T22 >

TEOREM 27?

(VxeM) (VBE{a,bP(I(X) = 8 <» 88X = x)*

TEOREM 24

(Vs,t€{a,b))(I(st) = s)«

Dokaz

() 8,t€0 Sup«

(@ st ~ ssst 1, T8
A I(st) =8 2,T23
1,3 >—-T24.

T23 >—

TEOREM 25

xeM) A CQI)X = x)*

TEOREM 26

(vx,yeM) (I(xy) = 1))«

Dokaz

@ x,yeM Sup*

@ x = 1C)I(X)x 1,T25
@ xy * ACYICIX)yY 2

@ xy = 11O (xy) 3,T7

G 1Ixy) = 1. 4,722,723

1,5 >-—-T26.
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D4,T7T8,T1,T7,7T6,T9 (analog T21) >---
TEOREM 27
(VxEM) (al8€{a,b})(xss = x)o

DEFINICIJA 11

(WxeM)(d(xX) = a » 8€{a,b} & xes = X)*

D11,T27,T8,T4 (analog T22) >-—-
TEOREM 28

d€SsurJdekc(M,{a,b*)#

D11,T28 >-—-
TEOREM 29
(VxeM) (Vs€{a,b}P)@(Xx) = a *~» xse

T8,T29 (analog T24) >-—-
TEOREM 30
(Vs,t€{a,b})(d(st) * O#

T29 >——
TEOREM 31
(VxeM) (xd(x)d(x) * x)*

T31,77,7T28,T29 (analog T26) >-—-
TEOREM 32

O, yEM) (d(xy) * d(y))-

DEFINICIJA 12
(VXeM) (V8E{a,b} )(I(X) « 8 <*» 8

DEFINICIJA 13
(YxEM) (Teg{a,bPD@(X) =s «» s

D12,D13,T15,T16 >--T33,T34.
TEOREM 33

ED (I (x) * a I) =b & 1) *b

TEOREM 34

(YxeM)@(X) =a <» dX) *b a dXx)

I
o

10)).

d09).-

=b

&~ b

1) * a).

d(x) = a).



TEOREM 35

(-i 3zeM) (Vx€M) (zx = X)
Dokaz

(1) (BzeM)(VxEM)(zx = X)
@ 1(@)1)eM

® zZIDI@) = 1D
@ 1@ =13

G) a=>b

1,5,T2 5--T35

T28,T34,7T3,T4,7T30,T32,T2 (analog T35) >—

TEOREM 36
(-i 3ZEM)(VXEM)(XZ = X).

1.2.2. LJUSKA m-BROJA

DEFINICIJA 14
(VxeM) (@GO = 1GQdCD)0

D14,73,7T24,7T30 -——-
TEOREM 37

VueEQ () - u).
T22,T28,T37 >——
TEOREM 38

g€Ssur~ekc(M,Q)*

T26,T32 >
TEOREM 39
(G yEM (Alxy) = 109d(Y)) -

TEOREM 40

(VxeM) (q(x)x = x).

Dokaz

(D) Xem

@ qCIx = 10CYdO)x

€©)) B 1OCQdOA TG TOOX
Q) ~ 1O TOO)x

® = X

1, ,5 -——-T40.

15

Sup«
1,722,7T33,T3,T4
2,1

3, 124,726
4, T22,T33

Sup«
1,D14
2,T25,T7
3,T8
4,T25
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D14,T31,T7,T8(analog T40) >--
TEOREM 41
(VXEM) (Xq(x) * xX)*

TEOREM 42

(WVXEM) )T (X)X = X))o

Dokaz

@ xeMm

@) 1T = 1T I
©) = 109 1(X)x

@ = X.
1,2,4 5--T42.

T31,T7»T8 (analog T42) >
TEOREM 43

(YxeM) (xd(x)d(x) = X)-

1.3. OPERATORI NASLIJEDIVANJIA

1.3.1. LIJEVI I DESNI SLJEDBENIK

DEFINICIJA 15
(WXEM(P1(x) = Px * 1()T(X)X).-

DEFINICIJA 16
(WXEM)(PA (X) m xP a xX5(x)3(x))*

TEOREM 44
x, yeEW (P(xy) * (PX)y)-
Dokaz

(1) x,ycM

@ P(xy) m X(xy)1(xy)(xy)
(€)) XOA IO (Xy)
(€) * (PXy

1.4 >—— T44.

D15,D13,T32,T34,T7 (analog T44)
TEOREM 45
(WX, YEM) (xy)P = x(yP)).

m-BROJA

Sup*

1,D15
2,D012,7T26,T33
3,D15,T7



TEOREM 46
(WxeM) a4 (Px * x)e

Dokaz

@O @BxeM)(Px =x)

@ T1C)T)Xx * X

B TOITOCOXx « 1C)I(X)xX
@ 10 =169

G a=0>Db

1,5,T2 -——-T46.

D16,T31,T9,T34 (analog T46) >--
TEOREM 47
(WxeM) a4 (XP = x).

TEOREM 48

PleSbiJekc(M>M) -
Dokaz

(1D PlI6SFfunkc(*M>-

2 CIx,yiM)(Px = Py)

@ 11O = T IY)Y

@ 1) = 1Y)

(5)x=y Vv Px =x v Py=y
® x =y

M (YxX,yEM)(Px =Py o X «Yy).

@) yeM

®y=1MIWYY

1 =1MWIMIMIYY
an = CTMI)y

a2 =prPaOMmMIMY)

(13) yeM -> (BxEM)(y = Px)
(149 M Q Adom(P1)

(15) Adom(P1) = M.

1,7,15 >-—- T48#

D16,T5,T9,T10,T45,731,T8,D13 (analog T48)

TEOREM 49
Pd€Sbi jekc(M*M)*

17

Sup*
1,D15
2,T25
3,T9
4,T33

D15,T5

Sup.

2,D15

3,T9
3,4,7T10,D15
2,5, T46
2,6

Sup.

8,T25

9,T8
10,D15,D12
11,744
8,12,T5

13

1,14
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TEOREM 50

x,yeM) (X(Py) = (XP)y).

Dokaz

@O x,yeM & dG) = 1Y)

@ x(Py) = x@OQd)Y)

G x(Py) = (xdOYd(x))y

@) xPy) = (xP)y

G Ox,yeM)@C) = 1¢y) — x(Py) = (xPy).
® x,yeM & 4 A0C) = 1Y)

@ x(Py) = x(dOYAd)Y)

® = (xd()d(x))y

® = Xy

(10) = x(IWMIMY)

an = xdCYA)Y)

a2 = (xd0)d())y

(15) = (xP)y

A4 x,yeM) (A dC) = 1))  —» x(Py) = (XPy).
5,14 >---T50.

PRIMJERI

126 ab(Pab)
127 ba(Pba)
129 ab(Pba)

DEFINICIJA 17

(WxEM) (P°(x) = P°x

DEFINICIJA 18

(YxeM)(P°(xX) = xP° =

D17 >---
TEOREM 51

(EM) (P (x) = P~

D18 -——-
TEOREM 52

(VXEM) (PA(x) = X?1 =

abbbab
ba (baP)ba.
abaaba (abP)ba.

X

Px).

xP).

abab = ab = abaaab

128 A(PA)
150 A(PB)

& (VNEN+)(PM+1(0)

X & ((VneN*)(PM+1(X)

Pn+1x

xPn+1

(abP)ab.
ABA =

Sup.
1,D15,D12
2,T7
5,D16

1,4

Sup.
6,D15,T55
7,T7
8,T51
9,T25
10,6,T54
11,77
12,D15
6,15

(AP)A.
AAB = ABB = A(PB).

PnPx)).

XPPn)).



D17,T48,T51 (tot.indukc.) >---
TEOREM 53
(VneN+) (F?€Sb1Jekc (U, M».

D19,T49,T52 (analog T53) >---
TEOREM 54

(YnEN') (PAESbl jekc (M, M) .

PRIMJERI
131 P1AB = P°PAB = P°BAB = BAB.
133 baP3 = baPPP = babbPP= BPP

DEFINICIJA 19

(WxeM) (VnENH)Y(P’n(X) = P''nx =y
DEFINICIJA 20
(WXEM) (VNEN+H)(P'Nn(X) = xXP“n =y

DEFINICIJA 21
WxeM)(PAM(X) = P’x = P-1x).

DEFINICIJA 22
(YxeM)(PE(X) = xP» ="P"1).

D19,T53 > -—-
TEOREM 55
(VneN) (P5€SMJI e kc (M,M)) -

D20,T54 >---
TEOREM 56
(YneN) (p56Sbi jekc (M, M)) .

TEOREM 57
x,yeM)(VneN) (Pn(xy) = (Pnx)y).

Dokaz
T44,D17 (tot.indukc.) >---

152 P2B = P~B = PAB
= BAP = BAB

Pny

yPn

@O X, yeM)(VnENHYPn (y) = (Pnx)y).

@) x,yeM & n€N+
A Grze) (x = Pn2)
@ xy = (Pn2)y

= P3ab.

BAB.

Sup.

19

2,T55

2,3



20

®) xy =Pn(zy) 4,1
® P nkxy) =zy 5,D19
@ P*nxy) = (P-nx)y 6,3,D19

1,2,7 >—-T57.

T45,D18,756,D20 (analog T57) >-—-

TEOREM 58
(Vx,yeM) (VNEN) ((xy)Pn = x(yPn)).
TEOREM 59
(WX, YEM) (VNEN) (X(Pny) = (XPn)y).
Dokaz

T50,D17,D18 (tot.indukc.) >
(1) (vx,yeM)(VneN+)(xX(Pny) = (xPn)y).

(@) x,yeM A n€N+ Sup.

G @Bw,zeM))(XP~n =w A P'"ny = 2) 2,T55,T56
(A XP~n)y = wy A xX(P-ny) = xz 2.5
GYP*n)y =w(Pnz) A x(P’ny) = (wPn)z 4.,3,D19
(6) (xP"n)y = x(P~ny) 5,1

1,2,6 -——— T59.

TEOREM 60

(VXEM) (Vm, NEN) (PIPNX = PA*1Y) .

Dokaz

D17 (tot.indukc.) >—

(1) (vxeM)(Ym,nENN) (PmPnx = P@®*1) .
1,019 >—

(2) (vxeM)(Vm,n€N) (egn(m)
@B xeM A m,neN A - (sgn(m) = sgn(n)) A PmPnx =y. Sup.
3,019 >—

(4 Pnx = P~®y

sgn(n) PEPNx = P®+nx).

(5 BkEN)((n+tk=-m v n=-m+k) A (sgn(k)=sgn(n)=8gn(-10)))
4,5 N—

(6) Pnx = Pn+ky Vv P"m+kx = P”’my

2,5,6,T55 ~—

() x =Pky v Pkx =y



7,5,D19 >
@ y - Pn+tmx
3,8 >-—-

(9) (Yx«M)(Ym,n€EN)(-i (egnCm) = sgn(n))
2,9 >---T60.

D18,D20,T56 (analog T60) >-—-
TEOREM 61
(VXEM) (Ym,nEN) (XPIPn = XPm+n).

TEOREM 62
(YXEM) (VNEN) (d(Pnx) = d(X)).-

Dokaz

Q) Xem

@ dPx) = d IO

@ (Vxe)dPx) =d())

3,D17 (tot.indukc.) >

@ (VXEM) (VNEN*DHD(PnX) =d(x))-

BG) xEM & neN+ & P~nx =y

®) x * Pny

@) dG) = dy)

@) (WxeEM)(VneN) (d(Pnx) = d(X)).-
4,8 >---T62.

D16,726,D19 (analog T62) >-—-
TEOREM 63
(VXEM) (VnEN) (I(XPn) = 1(x))=

TEOREM 64
(WVXEM) (P*x = 1)1 (X)X) -

Dokaz

(D) Xem

@ FEryaen(x * Py)

3 x =TTY)Y

@ 10 =1y

G TCAICOX =1MIMIM Y)Y
® R 162 216%)Y%

@ *y

@ P~ * 1) I(X)X

1,8,D21 >  T64.

21

PIPNX * PR®+nX).

Sup.-
1,D15
1,2,T32

Sup.

5

6,
S,

,D19
4
7

Sup.

N OO DN W®WN PR

153

D15
T26,T24
,4,T33

T8

T42

,7,D19



22

T54,D016,T30,T32,T34,T8,T43,D20,D22 (analog T64)

135
137
139
141

TEOREM 65

(VXEM) (XP* = xd(X)d(X)) -
PRIMJERI

134 P’ba * abba = aBa.
136 P’ab = baab = bAb.
138 baP” = baab = bAb.
140 abP” = abba = aBa.
142 P*AAABAA = BAA.

144

145
146

A(P»B) = AabB = ab
(BP»)B = BbaB = B(P’B) = Bab = B.
P~2BA = P*P’BA = P’abBA = baabBA * baaa =

TEOREM 66
xeM) (VueQ)(ux = X V UX =Px V UX

Dokaz

D) Bx,yeEM)(Hu€Q)(y = ux).
@y =101 «v y =10)1I)x y

©)

Yy
y =X V

1,3,, >---T66.

D4,T28,T31,D16,T65,T43 (analog T66) >---

TEOREM 67
(WxeM)(Vuefi)(xu = x v xu=xP

1.3.2.

q-SLJEDBENIK m

DEFINICIJE 23-24

23
24

(Vx€EM) (VN€EN) (Qnx
xeM)(VneN) (XQn

DEFINICIJE 25-28

WxeM) (Qx = (i)
(VxEM)(xQ = xQ1).
(VXxEM)(Q»x = Q—1x).

25
26
27

28

(Vx €M) (xQ*

= xQ_1)=

143
= AabB

-BROJA

P2nx).
XP2n).

P’A = baA = ba

P’B = abB = ab
AP* = Aab = ab
BP» = Bba = ba
BABBBBP* = BA.
(AP»)B.

TOOI)Xx V y = 1G)TX)X
y =Px v y =P’X Vv vy

P*X).

V. Xu= xP*).

ba.

Sup.-

1,D4,T22
2,T25,D15,T64,T42



D23,D24,D017,D18 >-—-
TEOREM 68

xiM)(Q°x = x = xQ°)

D23,D19 >
TEOREM 69

(Y, YyEM) (YNEN) (Qnx * vy X = Q“ny).

D24,D20 >--
TEOREM 70

(Vx,yeM)(VNEN) (xXQn =y X =yQ’n).
TEOREM 71
(VxeM) (VneN) (Qnx = xQn).

Dokaz
D23,D17 --———1,2

(1) QA = PPA = PBA = ABA = ABP = APP = AQ.

@ QB = BQ.-
D23,D17,T8 >~ 3,4
(3@ Qba = PPba = Paaba

(@ Qab = abqQ.
1,2,3,4,T3 -——

G (WEQ(Qu = uQ).
®) G = {xs xEM & 0Qx = xQ}.
() NCO

@) xecG & Yy€G

@ Axy) = @)y
(10) = (xQy
1) * xQy)
a2 = x(yQ)
13) = (xy)Q
(14) x,ye0 —» xy€G
(5 G au

16) (VxeM)(Qx = xQ)=

@an H = {ns us\N\* & (Vx«M)(Qnx = xftn)}
(18) OiH

(19) neH

23

bbaaba = bbaa = babbaa = baPP = baQ.

Def.

6,5

Sup.
8,D23,T58
9,8,6
10,759
11,8,6
12,D23,T57
8,13,11
6,7,14,T6
6,15

Def.
17,768
Sup.



24

(20) OrxeM)(Qn+1x = QxQn)

(@2 = xQn+1)

(22) neH (n+1)eH

17»18,22 (tot.indukc.) >---

(23) H = N+

(24) (VxEM) (VNEN+)(Qnx = xQn).
(25) (VXEM) (YnEN+) (2yEM) (Q“nx =y)

(26) ( x = Qny)
@7 ( x = yQn)
(28) xQ-n = y)

(29) (VxeM)(VnEN+)(Q”’nx = xQ~n).
24,29 >---T71.

D23,D24,T55-T61,T71 >---T72-T76.
TEOREM 72
(VnEN) (Qn€SMIekc (M,M)).

TEOREM 73
(Vx, yeM) (VneN) (Qn (xy)

TEOREM 74

(Vx,yEM) (VneN) (x(Qny) = (xQn)y).

TEOREM 75

(YXEM) (Vm,nEN) (QmOQNx = Qm+nx & xQm+n = xQmQn).
TEOREM 76

Vx,yeM) (VneN) (Qnxy = xQny & xyQn = XQny).
PRIMJERI

147 Qba = bbaaba = BA. 148 Q’ba =baabba = bABa.
150 Qab = aabbab = AB. 151 Q’ab =abbaab = aBAb.
153 QBA = BQA = DPAQ. 154 Q°BA =ba.

TEOREM 77

(VXEM) (VNEN) (-1 (P2n+1x = xP2n+1)).

Dokaz

O G (BnEN)(P2n+1x = xP2n+1)
@ P2n(PxX) = (xP2n)P

@ an(Px) = (xQn)P

Qmy & (xy)Qn = x(yQn)).

19,D23,T60
20,16,T61
19,21,17

23,17
R23,T55
25,D19
26,24
27,T70
28,25

149 QA =ABA.
152 QB =BAB.
155 ab =Q»AB.

Sup.
1, T60
2,D23



@) On(Px) = Qn(xP)

B) Px = xP

®) TOHTX)Xx = xa(x)d(x)

M 160 =16 & d) =509
8)a=*hb

1,8,T2 >-—-T77.

TEOREM 78

(VXEM) (VNEN) (g(QnxX) = q(x)K

Dokaz

(1) (vxeM)(VneN)(q(Q™x) = 1(Q™x)a(Q"x))
(2) = 1(xQ™)a(Q"x))
(3) = 1(x)d(x))

3,D14 >— T78,

TEORM 79
(VxeM) (BnEN) (X * Qng(X))#
Dokaz
T37»T68 >--—
(1) (VuEd)(u = Q°q(u))=
173,023 >—-

(2) (Vu,ve€Q)(BKEN) (uv a QkIl(uv)d(uv)).
@R G afxs XM & (@BneEN)(x = Qnq(x))>

% QCG
(5) XEG&  y€d

() GBp,reN)(X =Qpa(x) & y =Qra(y))

@ xy =Qp+rq(x)q(y)

@ xy =Qp+r+kl(qCx)q(y))d@ay))
©) xy =Qp+r+k1(x)d(y)

(10) xy =Qp+r+kq(xy)

(1) x,yEG —» xyeG

a2 6 =1

3,12 >---T79*

3, T71,T73

4, T72
5»D15»D16
6,7T26,T24,T732,T30
7»T33»T34

D14
1,T71
2,T62,T63

Def,

3,1
Sup«

5,3

6,T75
7.2.T75
8,7T26,7T32,D014,7T24,T30
9,D014,T26,T32
5,10,3
3,4,11,T6

25



26

TEOREM 80
(WXEM) (BNEN) (X = Pn dOGQd(X) = 1G)T(X)PN).

Dokaz

T3,D15,D16 >—

(1) (Vu€0)BkEN)(u = Pk d(wd(u) = TWI1(WPkK).

(2) (vxeM) (Bk,meN) (x=QmPk d(O)d()=1()1(X)PkQm) 1, T79,T71

R) x = p2m+k 3)AX) = 1)1 (x)P2m+k 2, D23,T60,T6l
2,3 >---T80.

TEOREM 81

VX, yeEM) (xy = yx a() = a))-

Dokaz

1) G, yeM(xy = yx) Sup.

@ 1) = Iy) & dy) = d) 1,  T26,T32
@ A = ay) 2,D14

(4) (VX yeM)(xy =yx -> ad(x) = a(y))- 3.1

(G) EXYyEH @) = ay)) Sup.

(6) @Bm,nEN)(x =Qma(x) & y = Qna(y)) 5,T79

(M xy = Q®+ng(x)aq(y) 6,775,776

(® xy = Qnq(y)Qmq(x) 7,5,T75,T76
(9 X, ye (@) * ay) —-» Xy =yx). 8,6,5

4,9 5--T81.



4. CETVORNA
m-B ROJEVA
1.4.1. OPERATOR DUAINOSTI

DEFINICIJA 29
(WxEM)(Dx = X = PxP»).

TEOREM 82
(Vx«M)(DDx = x).
(D) XeM

(2) DDx = D(PxP»)
(€)) = PPXP»P>»
Q) = QxQ™*
©)) = X.

1,5 >--T82*

82 >—-

TEOREM 83

(WX, yEM)(Dx =y —» Dy = X)

TEOREM 84
DeSbiJekc<" M) *

Dokaz
D29,T48,T56,T1 >

(1) DeSfunkc( >M)*

@ xeM
@ GyeM)(Ox =y)
(4 DDx = Dy

G (VxeM) (ByEM)(x * Dy)
() Adom(D) = M.

() x,yeM & Dx * Dy

(8) DDx = DDy

@ (x,yeEM(DOx =Dy —» X
1,6,9 ~—-T84.

GRUPA

y)-

27

PERMUTACI JA

Sup.

1,D29

2,D29

3,D23,D24
4,T71,T75,027,T68

Sup.

2,1

3
2,3,4,T82
1,5

Sup.

7
7,S,T82



28

D29,D15,T65 >—
TEOREM 85

(XEM)(Dx = 1) 1O)XA()A(X))-

PRIMJERI

156 Daa=bbaaab=bbab=bb. 159 Dba=aabaab=ab.

157 Dbb=aabbba=aaba=aa. 160 Dab=bbabba=ba.

158 DAB=bbABba=BA. 161 DaBAb=bbaBAbba=bABa.

TEOREM 86
(Vs,te{a, b)) (D(st) = iD).

Dokaz
T15,T16 >

(D(s, te{fa,b})(sat VvV 8 =1.

@) Sup.

) D(st) sttt 2,185
(4) D(st) ssssi v D(st) s sisiis 3,1

o) = iiis 4,T8
(6) * % = 18 5,T8
) = it 6,1,T17
2,7 -—-T86.

I

N = -

~t - (£| -
n
< <
I |

TEOREM 87

VX, yeW) (O(xy) = (Dx)(DY))-

Dokaz

@ x,yeM Sup.

@ D(xy) PxyP* 1,D29

(©)) (PxP») (PyP?) 2,T50,T60,T61

C) Ox)(Oy) 3,D29
1,4 5--T87.

PRIMJERI
162 DAB

AABABBA.. 166 Dabba baab.

BA. 164 DBBABAAB

163 DBA = AB. 165 DaBABAb bABABa . 167 Dbaab = abba.



29

TEOREM 38
(VXEM) (DX = POxP).

Dokaz

@D Xem Sup*

(@ Dx = P*P(Dx)P*P 1, T60,T61
(€)) = P*(DDx)P 2,D29

(@) = P»xP 1,3,T82

1,4 >--T88,

188,764 5—-—
TEOREM 89
xeM)(Dx = T T(X)X3(X)3 (X))

PRIMJERI
168« Daa=baaabb=bb* 169* Dba=abbabb=ab. 170.DAB=baABab=BA«

TEOREM 90

(WVXEMA) =T() A d) = 3(X))-

Dokaz

(D xeM Sup«

(@) Dx = 10C)1C)Xxd(x)Ad(x) 1,785

G IO =10 A dDx) =3 1,2,7T26,T32
1,3,D29 5--T90.

PRIMJERI
171. 1(A)=b* 172. d(B)=a. 173. I(54)=a« 174. d(SS)=a.

DEFINICIJA 30
(Vxem (@) = ba(x))=

PRIMJERI
175. q(A)=B. 176. q(B)=A. 177. q(ba)=ab. 178. qg(ab)=ba.

179. q(BAB)=A.

TEOREM 91
WxeM) (@) ® T()A(X)) -

Dokaz

@D XM A 1(x)Fa A dx) =t Sup.

@ q =D(et) 1,D30,D14
(€)) «st 2,T86

(€) =1(x)d(x) 1,3,T33,T34

1,4 >--T91.



30

TEOREM 92

(YxeM) (@) = a(x))-
Dokaz

(1) xcM

@) q®@x) = 1(DOx)d(Dx)
©) =1CAdCO

@ =q()
1,4 >--T92.

TEOREM 93
(YXEM) (VNEN) (PNDX = DPnx)e

Dokaz
Q) xeM & n€N
(@) PnDx = PnPxP»

(©) = Pn+1xP”
@ = PPnxP»
©)) = DPnx
1,5 5—-T93.

D29,T61,T52 (analog T93) >-—-
TEOREM 94

(Vx6M) (VNEN) ((Dx)Pn = D(xPn)).

D23,D024,7T93,T94 >—
TEOREM 95

xeM)(VneN)(OQnx = QnDx = (Dx)Qn = D(xQn)).

Sup.

1,D14
2,T90
3>T91

Sup.

1,D29
2,T60,T51
3,T60,T51
4,D29



1.4.2. OPERATOR KOMPLEMENTARNOSTI

GEDHISE).
Dokaz

13,75 >--—-
(1) (Vu€Q)(Vs,te{a,b} KsuteM).

@ G = {x: xeM & (s,te{a,b} —» sxtem)}
@) O0£G

(@) xeG & yeG

(5 (Vs, te {fa,bP)(sxd(xX)cM & d(x)yteM)

(6) sxd(x)d(x)yteM

(7) sxyteMm

@A x,yEG —» xyeG

© G =M

2,9 >---T96.

DEFINICIJA 31
(VxeM) (Kx = T()xd(X))-

PRIMJERI

180 Kab = baba = ba. 184 KaBa =
181 Kba = abab = ab. 185 KbAb =
182 Kaa = baab = bAb. 186 KAB =
183 Kbb = abba = aBa. 187 KaBAb=
D31,T96 >-—-

TEOREM 97

(VxeM) (KxEM) .

TEOREM 98

(VxEM) (KKx = x).

Dokaz

(1) xeM

@) KKx = K(I(x)xd(x))

(€)) = 1) TOXd()A(x)

) = X
1,4 >-—- T98.

babbab
abaaba
bABa.

baBAba

o

31

Def.

2,1

Sup.
4,2,T22,7T28

5FT5

6,T31

4,7
2,3,8,T6

BA

Sup.
1,D31
2,D31
3,T42,T43



32

T98 >-—-
TEOREM 99

WxeM)(Kx =y = Ky = X).

TEOREM 100
KeSbi jekc(M,M)#

Dokaz
D31,T97 >——

(D) KeSrunkc<* M >*
(2 x«M

@) QGyeEW(Kx =1y)
(4 KKx * Ky

G) Adom(K) = M.

® (vx,yeEM)(Kx * Ky
1,5,6 >--T100.

D31,7T26,T32 >-—
TEOREM 101

(EM(LKx) = 1) A d(K) = 3(X)).

D14,T7T101,T90 -——-
TEOREM 102

(VxeM)(@(Kx) = qa())«

TEOREM 103

4

X = y)«

(YXEM) (YN€N) (PnKx = KP~nx).

Dokaz
(1) XeM
(@ PKx = PT(xX)xd(x)

(€)) = 1T T)X3(X)

C) * 1OOX3C)
®
Q)

KTOO (X)X

) (YxEM)(PKx * KP’X).
@) (IXEM)OnENpoz)(PnKx =xKP’nx)

(@ Pn+1Kx * PKP”’nx

(10) Pn+1Kx * KP"(n+1)x

1O 1) I )Xd(X)

Sup«

2,1

3
1,2,4,798

T98

Sup«
1,031
2,D15,D12
3,T42
4,T8
5,D31,D12
1,6,T64

Sup«

8,T60
9,7,T60



(11)(VxeM)(VneNpOZ)(PnKx:KP~nx -» Pn+1Kx=KP"(n+1)x):

7,11,D21,T51 (tot.indukc.) >

(12) (YxeM)(VneN"f)(PnKx = KP*nx).
D31,D15,D12,T42,7T8,T64,T60,D21,T51 (analog 12) >
13) (vxeM)(VneN*)(P~nKx = KPI').

12,13 >---T103.

D31,D16,D13,T43,T8,T65,T61,D22,T52 (analog T103) >
TEOREM 104
(yx€EM) (VNEN) ((KX)Pn = K(xP~n)).

T103,7T104,023,024,T71 >--
TEOREM 105
(VXEM) (VNEN) (KQnx = Q_nKx = (Kx)Q_ n = K(xQn))=

1.4.3. OPERATOR INVERZNOSTI

DEFINICIJA 32
(YXEM) (IX = KDx)=

PRIMJERI

188 Iba = KDba SKab = baba =ba. 192 laBa = KbAb
189 lab = KDab —Kba * abab = ab. 193 IbAb = KaBa
190 laa = KDaa SKbb = abba S aba.194 [IBA = bABa
191 Ibb = KDbb S Kaa = baab S bAb.

TEOREM 106

VxEM(1Ix * X).

Dokaz

(D) XeM

(@ 11x = KDKDx

(©)) = KDKT(x) 1 () xd(X)5(X)

) = KDI GO TGO 1 GOXd()d GO d(X)

) = KTOOXd()d ) d(X)

6) * KIO)Xd(X)

@ = KKx

® = X

1,8 >—T106

33

8,10

abAba * A.
baBab = B.

D32

185
D31,D12,D13
T85,T8

T31

D31

T98



34

TIO6 >——
TEOREM 107
(\Wxe)(Ix =y —» 1y « X))«

D32,T84,T100 >
TEOREM 108

1€Sbijekc(M,M)*

TEOREM 109
VxeM) (q(Ix) = q(x))=
Q) Xem

@ qdx) = qKdx)
©) * q(Dx)

Q) = q(DbDx)
® *a()

1,5 >—-T109.

TEOREM 110

(VXEM) (YNEN) (PniIx * IP~nXx).

Dokaz
(1) xeM & neN
(@ P = TIKDx

(€)) = KP~nDx
() = KDP*“nx
©) = IP*nhx

1,5 >--T110.

D52,T104,T94 (analog T110) 5-—-
TEOREM 111
(YXEM) (VNEN) ((IX)Pn = 1 (XP'"'n));

D23|D24»T110,Tili >--
TEOREM 112

xeM)(YncN)(IQnx = Q~nlIx = (Ix)<fn

1(xQn)).

Sup«
1,032
2,T102
3,T92,D29
4,782

Sup«
1,D32
2,T103
3,T93
4,D32
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TEOREM 113

(VxeM) (Ix = DKx),

Dok«iz

Q) XxeMm Sup,
(@ Ix = KDx 1,D32
©) = KITQGO 1()xd(x)d(x) 2,T85
@ * 1T 1CXAOOA)Ad (%) 3,D31
o) = 1QCQTO) 1 (O)xA(x) 4,78
®) * 1CQTOO I )X3C)AC)A(X) 5*T43
) * 1A TGO (KA GYA) 6,D31
® e T(KO)T(KX) (Kx)3(Kx)3(Kx) 7»T101
(©)) * DKx 8,T89

1*9 > ~ T113.

1,4,4. GRUPA TRANSFORMACIJA IDENTICNOSTI, DUALNOSTI,
KOMPLEMENTARNOSTI 1 INVERZNOSTI

DEFINICIJA 33
T = {Q°» D, K, I}

DEFINICIJA 34
(VFr F2€r )(F1+ F2=F ~ = {(X,y): xeM & y =F"z}).

D33,D34,T68 >-—-
TEOREM 114
(VFED(Q°F =F A FQ° =F).

D33,T114,7T82,T98,T106 >-—-—
TEOREM 115
(VFeT)(FF » Q°).

D32,D34,T113 >--
TEOREM 116
I = KD = DK.
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TEOREM 117
D = KI = IK.

Doka:z

(1) KI *=KKD T116
@) Q°D 1,T115
€) D 2,T114
[0)) = DQ° 3,T114
5) * DKK 4,T115
®) = IK 5,T116

1,3,6 >-— Ti117.

T114-T116 (analog T117)
TEOREM 118
K = ID = DI.

D33,D34#T114-T118 >
TEOREM 119

Q° Q° D K 1
D D @ I K e Scayley t. (7 ™ )-
K K 1 Q D



1.5. .-S TRUKTURA (OPERACIJE ZBRAJANJA m—BROJEVA)

DEFINICIJA 35

FA = {((x,y),2): x,yeM & (d()=a &
doO=a &
@doO=b &
[WOO=b ft

D35,T22,T28,T1 >
TEOREM 120
Vx,ygM) (31zeM) (((X,Y) ,Z)EFM).

DEFINICIJA 36
VX YEMD (X Ay = Z > ((x,y),2)eF¢

DEFINICIJA 37

FA = {(0GY)-2): x.yed f& ((d()=a &
@d)=a &
@dx)=b &
@d)=b &

T120 > <

TEOREM 121

(Vx,yeM) (BH zem) (((X,y) ,Z)€EF™) =
DEFINICIJA 38

1(y)=a
1(y)=b
1(y)=a
1(y)=b

1(y)=a
1(y)=b
1(y)=a
1(y)=b

VoyeM(X Yy * z «» ((X,Y),2)EF0).

DEFINICIJA 39

s M, QF 7 )e

D3«,D33 >

TEOREM 122

(WX, yEM(X Yy s z » ((dMX)=a &
dx)=a ftt
dx)=b &
dx)=b &

T122 5--<

TEOREM 123

(WX, yEM(X "y =z <> ((@dE)=b &
dx)=b &
(d(x¥)=a ft
dx)=a &

1(y)=a
1(y)=b
1(y)=a
1(y)=b

AR AR

1(y)=b
1(y)=a
1(y)=b
1(y)*a

Ro R0 Qo =h

& z=Axy )
ft Z*o©

ft z=Q*AxyB)
ft z=xyB ))}.

z=xyA )
Z=Q*BxyA)
Z=Xy )
z=Bxy ))}-

R AR

Z=Axy ) V
Z=Xy ) V
z=Q*AxyB) V

z=xyb ))).

z=Bxy ) V
Z=xy ) V
z=Q*BxyA) V

z=xyA )))-

37

\Y



38

PRIMJERI
195 A B
196 B ISA
197 A A
198 B \NB = BBB
199 B W A = Q’ABAB
200 A \B s Q’BABA
201 BA ~ aBAb = ab.

T122,T8 >-
TEOREM 124

ba
ba
A
B
ab

>

ba

>

AB

9 9)

A
B AB
ab

T124 5-—-<
TEOREM 125

N ab
ab ab
B B
A A
ba ba

B
B
B
BA
ba

>

BA

ba

T124,T125 >-——
TEOREM 126

Vu,veQ)((q(u * v) = ab & qQu * Vv) = ba)

TEOREM 127
(Vx,yeM)(AXx Ny = X

Dokaz
@) x,yeM & dx)
@ < 0= ™ AAxy

©) * Axy
Q) SX y
©) = X N Ay

©) x,yeM)(d()

A.
B.

202 ab W ab
203 ba P ba
204 AB ba
205 ab N BA

= AB. 206 BA ab

= BA. 207 ba NAB

ab

ab

ab k's Cayley

ab

Q’ab

ba

ba

ba

ba

Q*ba

N Ay).
—a & I)
aftil(y) * a

= a

4

= Q*aaababbb = Q’ab
= Q ,bbbabaaa * Q ’ba

= aabbbabb = aababb
= bbabbbaa = bbabaa
= aabbaaab = aabbab
= baaabbaa = babbaa
tb(Q !A)'

IcS cayley th. (£ - « )-

v = Du)

AX MY = X V Ay).

aBAb
bABa

)]

BA.

BA.

1122
T13
3, T122
1,4,T25
1,5
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@ x,yeM A d(x) =a A Iy) =b Sup.
® Ax ™y = Axy 7,T122
® = AXAy 8.7,m
(10) = x N Ay 9,7,T26,T122
AD X, yeMd()=a A I(y)=b —» Ax 'y = x ™ Ay). 7,10
(12 x,yeM A dxX) =b A I(y) = a Sup.
(13) Ax *=*y = Q,AAxyB 12,7122
a4 = Q*AxyB 13,T13
(5) =x"Ny 14,12,T122
(16) = x N Ay 15,12,T25
an (vx,yeM) (d¢)=b A I(y)=a —» Ax "y = x ™ Ay). 16,12
(8 x,yeM A dxX) =b A I(y) =0b Sup.
(199 Ax vy = AxyB 18,T122
(20) = AXQ’PPyB 19,760
D = Q “AxAAyB 20,18,T59,T76
22 = Q*AxAyB 21,T13
23 = X V Ay 22,18,T122

CHOX,YEM)WD()=b A I(y)=b -» Ax "y =x Ay). 23,18
6,11,17,24,7T22,T28 >---T127.

T122,7T13,731,7T25,732,7601,759,T76,722,7T28 (analog T127) >---
TEOREMI 128-129

128 (Vx,yeM)(xB ~'y = X~ yB).

129 (Vx,yeM)(XA N By = XABy).
T127 >---<

TEOREM 130

(Wx,yeM)(Bx "'y =X By).

T128 >---<
TEOREM 131
(Vx,yeM) (XA &y = x N yA).

(Vx,yeM)(xB N\ Ay = xBAYy).
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PRIMJERI

208 AN A = AN Aba =AA N ba = AA N Bba =AABba = A.

209 B A =B N Aba= AB N ba=AB ™ Bba=A ™ BbaB =AB.

= B.
aBaABbABa=aBABa.

210 B~ B =baB ~ B = ba ~ BB = baA ~ BB = baABB

211 aBa ™ aBa = aBaA ™ ABbABa = AaBaA ™ BbABa

212 ab ™~ ba = aBaAB ™ Bba = aBaA ™ BbaB = aBaABB

213 ba ™~ ba = baA ™ Bba = ba. 214 AB N AB
215 BA ™ BA=bB ™ AA = BBAA. 216 AB ™ AB
217 AB ~ BA=BAB ™~ A= BABAA. 218 BA « AB

219 A~ B = abA &Bab = BabA ~ ab = Bab < abA

TEOREM 133
(VxeM)(A " x = x"-"A = AX).

Dokaz

) XeMm

@ 1(x)=a v I =0b
@G AMNXx =AAX v A X
@DOWxEM(A N X = AX) .

= AX

(B) XeM
®) dx) = a v dixX) =Db
D x"~A=Ax V X" A=Q’AxAB

®) = Q AxXBAB

© = AxXBPPQ*
(10 = AxB
D = AX

A2 (VxEM) (x ~» A = AX).
4,12 >---T133.

T133 >--<
TEOREM 134
(VxeM)(B "x=x"B=Bx) .

T22,T30,T25,T122,T13,T28,T60,T71 (analog T133)

TEOREM 135
(VxeM)(B ~ x = X"-"B = xB).

T135 >---<
TEOREM 136

(VxEM)(A 0 x = x ™ A = XA).

*

ab.

AA N BB = AB.
ABAB.
B « ABA = BBABA.

B

A * BA.

Sup.

1,T22
2,T24,T122
1,3,T13

Sup.

5,T28
6,T24,T122
7,6,T31
8,D016,T71
9,T61
10,731
5,11
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T122,T76,T78 >——
TEOREM 137
VX, YEM)(VNEN) (X ™ Qny = Qn(X y) = 0Qnx N y)«

T137 ~ —
TEOREM 138
(Vx,y€EM) (VNEN) (X Qny = 0n(X « y) =0nx " y)«

TEOREM 139
X, yEM (X ™ y) > g(@(x) N a()))-

Dokaz

@ x,yeM Sup«

(2) @m,neN)(x * Qmg(xX) & y = Qnq(y)) 1.779

@ ax ™ y) =a@maG) ™ Qna(y)) 1,2

€] * q@Qm+n(@C) N ay)) 3, T137,T75
® s g ™ ai))- 4, T78

1,5 5--T139.

T139 >-—-<

TEOREM 140

WIGYE @XM y) > @) * a(y)))«

TEOREM 141

X yeE) (X Ny *y N Xx).

Dokaz

(1) (Vu,veQ ™~ v = Vv VvV U). T124
2 x,yeM Sup«
3 @Bm,n€N)(Bu,VEQ)(X =Qmu & y = 0Qnv) 2,779,738
(@ x »y =Qmu w Qnv 3

® = QmQn(u ™ V) 4,T137
®) = Qmon(v v, u) 5,1
@ =Qnv v, 0% 6,T137
®) sy X 7,3

2,8 >--T141.

T141 >—<
TEOREM 142
(VX,YEM)(x My *y ™ X)
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TEOREM 143

My, D)X * vy r ) T M y)  2).

Dokaz

(DHOU,y,weQQu w (v ww) = (U™ v) Mw.

@) Xx,y,z«M

) (CTk,m,nEN) (BAL,Vv,WweQ)(X=Qku Tt y=0Qmv ft z=0Qnw)

@ x™ ™2 =Qkuyv, Qv v, q\)
e QkQmQn(u ™ (v ™ w))
« QkQmmn ((u
* (Qku ” Qmy) ~*
x"NMy) Nz

®)
©)
Q)
€)
2,8 -——-T143.

T143 -———-
TEOREM 144

VX,y,ZEM X * (y N 2 = (X

TEOREM 145

(VxgM)(ba x =x * x ™ ba).
Dokaz

(D) Xem

@ I(x) aa y

(3)ba « x= aabax v

@ = aax \%

o) =X \Y

1CO

ba N x

(®) ba»x ax =x w ba

1,6 >— T145«

T145 >- <
TEOREM 146

(VxeM)(ab " x =x=x"ab) .

T22,T122,T8,T25,T42 (analog

TEOREM 147

(VXEM)(ab W x * Q*AxB).

T147 >— <
TECREM 148

(VxeM)(ba « x = Q*BxA).

V) W W

YY) N 2.

= bax
* bax

T145) >-—-

T124

Sup«
2,T79,T38
3

4,T137
5,1
6,T137
7,3

Sup.

1,T22
2,T122

3,T8
4,2,T25,T42
5,T141



TEOREM 149
(ke A (WEM(x w k =

Dokaz

(1) (GBTKEMVXEM (X N k = X)
(@ ba ¥k = ba

) k =Dba

1,3 >--- T149.

T149 > —-<
TEOREM 150
((KEM A (WiM)(x ~ k

T137,T145,T7T146,T138 -——-
TEOREM 151

|

X
o/
o/

X))

4

k * ba.

(VxeM)(VNEN) (x ™ Qnba = Qnx = x * Qnab).

T151 >---
TEOREM 152
(VxeM)(x ™~ BA = Qx).

T152 >--<
TEOREM 153
(WxEM)(x ™ AB

Qx) -

TEOREM 154

(Wx€EM) (x » Kx ab).

Dokaz

(1) (VueQ)(u N Ku = ab )e
(@) x€M

(B) @nEN)BwEFI) (X = Q°w)
@ x M Kx =Q% ™ KQnw

() =Qn(w ™ KQnw)
®) =Qn(w " Q"nKw)
a »W w Kw

® *ab

2,8 >—T154.

T154 >---<

TEOREM 155

(YxeM)(x ™ Kx * ba).

43

Sup.-

1, T4,T3
2, T145
T124

Sup.
2,T79,T33
3

4, T137
5, T105
6, T137,T75,T68
7,3,1
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TEOREM 156

(WX,yEMH (X "y =ab & XNy =ba) —»

Dokaz
(1) Gx,y6M)(x "y ab A x Ny = ba)

@)
©)
Q)
®
©)
Q)
®
®
10)

(aAD@X)=A & Py=AbxbB) v (q(xX)=B A yP=AaxaB)
(g(x)=ba ft y =AaxbB) v (q(x)=ab A PyP=AbxaB)

qx *y) =ab A q(x " y) =ba

qa@(>x) " ay)) =ab & q@C) "~ ay))
ay) « Dg(x)

a®y) = a®9)

X Ny N Kx = ab ™ Kx

ab vy " ab ™ K*

Q’AyB = Q ’A(Kx)B

AyB = A(Kx)B

AyB=AT()xd(xX)B A I(V)=1(X) A d(y)=d(x)

y = KX).

ba

(A2)((xX)=A & y=baAbxb) v (q(x)=B A y=axaBba)

(A3)@()=A & y=bxb) v @XxX)=B A y=axa)
(@(X)=ba & y=axb) y (@()=ab A y=bxa)

as

1.14

(@()=ba Tt y=axb)

y = KX
T156.

TEOREM 157
(Wx,yeM)(D(x N y) = Dx * Dy).

Dokaz
(D WVu,VvEQ)(D(u yY) s Du * Dv)

@

X)yeM

@A) @Bm,nEN) Bu,veO) X =Qmu A y =Qnv)

Q)
®
Q)
Q)
®
€))
10)

D(x N y) =D(Qmu ~ Qny)
« DQMQN(u « V)
= 1lV*Diu v v)
Q“On(Du  Dv)
QmDu N (rtlv
J/A1 ' DQnv
Dx * Dy

2,10 >--T157.

v (q(x)=ab A y=baAbxaBba)

Vv

Sup.

1,T37
2,T139,T140

3, T38,T126
4,T102,D30

1
6,T154
7,T147
8,T72
9,D31,4,T86

10,4,733,T34

11,D19,D20
T64,T65,T8

12.78
13,031

T124

Sup.
2,T79

4,T137
5.T95
3,1
.T137
, 195

© 0o N O
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T157 >---<
TEOREM 158

(Vx,yeM)(D(X « y) = Dx " Dy)

1.6. RELACIJA r
1.6.1. KVAZI UREBENJE m-BROJEVA

DEFINICIJA 40

(Vs, t€ {a,b})((s Y «—» (a =a ft t*bh)).
P40 >--- T159-T161.
TEOREM 159
a <alf b-
TEOREM 160
(Vs,te€{a, b ((inf{s,t} = a a v t a)
(inf{s,t) =D b ft t b) )
TEOREM 161
(Vs,t€{a,b}P) ((sup{8,t} =0b b v t b) 1
(sup{s,t} = a a ft t a))
TEOREM 162
X yE) (I(x N y) = inf {1 (), 1(¥)})-
Dokaz
@O x,yeM Sup.
@ I =1y =s v 41X = 1(y) 1, T22
A Ix™*y) ss \Y IxX"™My) =a 2,T124,726
@ 1™y = iIinf{lx), 1)} 2,3»T160
1,4 -——-T162.

T22,T28,T124,T125>T160,T161 (analog T162) >  T163 T165.
TEOREM 163
VX, yEM (I(X AY) s sup{1(X),1(Y)})-

TEOREM 164
(Vx,yeM) (d(x * y) = eup{d(x),d(y)})-
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TEOREM 165
(Vx,yeM) (d(x ~ y) = Inf{d(x),d(¥Y)})-

D14,T162,T164 5—-
TEOREM 166

x,yeM)(a(x ~ y) = inf{1(), 1(y)}sup{d(),d(Y) P)-

D14,T163,T165 >---
TEOREM 167

(Vx,yes)(@(x 7~ y)  « sup{1 (), 1(y)Hnf{d(x),d(¥)}).-

T159-T167,T22,T28 >--T168-T174.
TEOREM 168

(VxEM @x * X) = q(X))-

TEOREM 169

(VxEM) (q(x « X) = g(X)).

TEOREM 170

x,yeM)(@@x ~ (v * X)) = a(X))-
TEOREM 171

VX YEM (@(x N (Y N X)) = a(X))-

TEOREM 172
(Vx,yeM)(a(x ~ y) = ay) » ax y) = a(x)).-

TEOREM 173
v O € > - & Y & o,

TEOREM 174
x,y,ze (a(x ~ (v * 2))

a(x * y) N XN 2))).

DEFINICIJA 41
x,yeM)(x ry «» gx”™vy)=qy))-

DEFINICIJA 42
WX, yeEM)(X F y <» qx ™ y) =ai¥)).



TEOREM 175

X, yeM(x ry
Dokaz
QO X,yeM A xXry Sup*
@ ax ™ yY) = qy) 1,D41
® ax 0Y) s gqx) 2,T172
@ (I\x,yeMH(x ry -—» y p Xx). 1,3,D42
G G, yew(y ¢ # Sup*
® ax *y) * qwn 5,D42
@ ax ™ y) = q 6,T172
@ (Vx,yeM(y T x X r y)* 5»7»D41
4,8 5——T175#
TEOREM 176
vx,yeM) (X r y » BzEM(X N z =y)).
Dokaz
D x,yeM A X ry Sup*
@ ax * y)=ay) A @m,neEN)(x ~ y=0mq(x ™ y) A
y =Qnq(y)) 1,D41,T79
@ x 7~y =0macy) 2
@ Onx ™ y) = QmQnacy) 3,T75
G x 7 Qn"my =y 4,2,T69»T137
OLYX,YEM (X ry -> @@BzeEM(X ™ z *y)). 1»5»T72
MEx,y,zeM A x 2 s,y Sup™
@ XAXNZ=X"-ny 7
© ax wx Vv 2) *qx " ) 8
(20) a@x ™ x) *a(z)) s ax ™y 9,T139,T143,T37
1) a@Cd ™ a(z)) = ax ~y) 10,7168
A2) ax * 2 =ax ™ y) 11,T139
a3 ay) *ax ™y 12,7
14 (x,y,zeM) (X~ z =y -» X r y* 7,13,D41

6,14 5--T176.

T176 --—-cC
TEOREM 177
(Yx,yeM(xX r y @BzeEM(X N z *y))
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T176,T145 >—-
TEOREM 178

(VxeM)(X r X).

TECREM 19

wx,y,zeM)(Xry A yrz —-» Xr 2).

Dokaz

) x,y,z€eM A Xry & yrz Sup.
@ @u,VEWMKx "u=y A y~rv=2z) 1,T176
A x unvs==z 2

1,3,T176 >-—- T179.

TEOREM 180

YxX,yeM) (X ry —» (zeM) (X zry”"™z & xXx™zry?®° z2)).
Dokaz

@O X, yM A xry Sup.

Q) G rw *y) 1,T176
B (Vze)(x "z w =y”™z) 2

@ (WYX ry —» Yz Nzry ™ 2). 1,3,T176
B yrx 1.T175
® @My *w =X 5»T177
D (VzeM)(y "zMw=x"z) 6
(QDDyr zrxrz T»T177

OOWxty\WHxry —» (VzeEMX ™ zry ™ 2z)). 1,8,T175
4,9 ~~--T180.

TEOREM 181
(Yx,yeM)(x ry » 9C) r a))-
Dokaz
@D x,y«sM & X ry Sup.
) (SzeM(x v z *y A
Gm,nEN)(X = Qma(xX) A vy * Qnq(y)) 1,T176,T79
@) Qma) ~ z = Qna(y) 2
@ qx) ™ Qm''nz « q(y) 3,T137,T69,T75
G) (YxyeMx ry -» aG) r ay)). 1,4,T150

@G)BX,yeM)(@(x) r ay)) Sup.-
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(M 0zeM) @G> z =a(y) &

A?2m,neN)(x = Qmg(xX) & vy = 0Qnqdy)) 6.T176.T79
@ Qm+n(@C) w 2) = Qm+nq(y) 7
® Qma() ™ Qn~mq(z) = Qnq(y) 8,T137,T69,T75
(10) x wQn-mq(z) =y 9,7
A1) Oxyem@e) r a@y) - X y). 6,10,T176
5.11 >---T181*
T181 2--<
TEOREM 182
vx,yeM)(x r y a®d r aiy))-
TEOREM 183

WX,YEM (X ry «» ) <alf 1) v 1Iy) = 1K) &
@ <alf d¢y) v d¢x) =d)))-

Dokaz

O x,yeM & xry Sup™*

@ ax *y) =ay) 1, D41
G IX*Y) =1(y) & dx Wy =d¥y) 2, D14

@ Inf{1C),.IMF=IQY) & sup{d().d(W}=d() 3, T162,T164
1,4>T162,T164 >--
GO,y xry — (AW <alf 160 v 1Y) = 1) &
doy <alf d@y) v d) =d(y)))=

D41,D014,T162,T164 (analog 5) >--
OGOy IY) <alf 160 v 1Y) « 1) &

aed < ,-d@y) v dix) =dy))) -+ xry.
556 >--T187.

D42,D14,T163,T165 (analog T183) >-—-

TEOREM 184

(rx,yeM)(x ¥ y » 1) <alf Iy) v 1 1Y) &
d@) <alf dO) v d(y) = d(9)))-

T183,T22,T28,T159 >
TEOREM 185
xyeM(x ry & yrx <» q@) =aq®)*

T183.T159.722 >--T186-T188.
TEOREM 186
(Wx€EM)(ba r x & x r ab)*



50

TEOREM 187
(VxeM)(A r x u I(X) = a).
TEOREM 188
(WxeM)(B r x *> d(x) = b).

T187,T188,T2 >-—-
TEOREM 189
l1(ArB & H4@rA.

PRIMJERI
220 ba r ABA. 221 B r BAB. 222 BAD r B. 223 ab F A.

224 ab r B. 225 ab r ba. 226 ab r AB. 227 BA r BABA.
228 BABA r BA.

1.6.2. MODULARNA DISTRIBUTIVNOST OPERACIJA ZBRAJANJA

TEOREM 190
WXLY,ZEM (XN (WA 2D = (XMNYy) Nz <» X T 2).

Dokaz
T183,7T24,T30,T159 >-—-
) UuVpWedD)(u ™ v ™*w) = W™V "W <» UTw.
T79,T137,T75,T72 5--
) (vx,y,zeM)(x » (y " 2) = x " y) "z 4
ax)  @Cy) a@) = @) * ay)) "~ a(@)-

2,7T138,1,T181 > - T190.

T190 >---<
TEOREM 191
VXY, ZE XN (YN 2D) = xNy) zZ <» X F 2).

PRIMJERI

229 AN B™"A) = (A™MNB) A =ABA. 230 AN (BAN AB) =
(A™NBA) ~AB = ABA « (B ™ a) = (ABA~B) ~ A = ABABA.

231 ABa (BwA) (AB a B) A = ABAB.

232 Av (AaB)HAwA)a B.

233 ABv (AaB) F(AB ™A a B.



1.7.
1.7.1.

DEFINICIJA 43
(VxeM)(Jo(x) = baxba).

DEFINICIJA 44

51

NERAZLOZIVOST (ELEMENTARNOST) m-STRUKTURE

s-JEZGRA X p—-JEZGRA mHBROJA

(VXEM) (Ip(X) = abxab).

PRIMJERI

234 JS(A) =ba. 240 Js(ab) = bABa. 246 j8(ab) « BA.

235 Jp(B) = ab. 241 J (ba) = aBAb. 247 Jp(ABA) = AB.

236 JS(B) = ba. 242 Js(BA) = BA. 248 Js(aBAb)= bABABa.

237 Jp(A) = ab. 243 Jp(AB) = AB. 249 Jp(bABa)= aBABADb.

238 JQ(ba)= ba. 244 Ja(ABA)= BA. 250 JQ(bABa)= bABa.

239 Jp(ab)s ab. 245 J (BAB)= AB. 251 J (aBAb)= aBADb.

TEOREM 192

(WXEM) QA g0) = (X~ ab) ~ ba).

Dokaz

(D) XeMm Sup.

@)(x ™ ab) ™~ ba = Q*B(x N ab)A 1, T148

o) = Q' BQ*AXBA 2, T147

(C)) * P~Z2BAXBAP~2 3, T71,D23,D24
) = P’ AxBP’ 4, T64,T65,T8
(6) = baxba 5, T64,T765,T8
@ = Js(X) 6, D43

1,7 >—-- T192.

T192 >---<

TEOREM 193

WxeM)(Ip(x) = (X ba) ™ ab).

PRIMJERI

252 Js(ABAB) = (ABAB ™ ab) A ba = AB ™ ba = BA.

253 JS(BABA) = (BABA N ab) ™ ba = ABAB ™ ba = BABA.

254 Jp(ABAB) = (ABAB N\ ba) ab = BABA ab = ABAB.

255 Jp(BABA) = (BABA ~ ba) ~ ab = BA ab = AB.
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D43,T39 >-—-
TEOREM 194

(VXEM) (q(JI8(X)) * ba).

T194 >--<
TEOREM 195

(VxeM) (@(Ip(x)) = ab).

1.7.2. a-RASTAV 1 p-RASTAV m-BROJA

TEOREM 196

(WxeM)(@(X) =ba —» x =ba ™ JQX))-

Dokaz

D xeM & qg(x) = ba Sup.-

(@) Jg(xX) = baxba 1,D43

() * X 2,1,T42,T43

1,3»T145 >-—- T196.

T196 >---<
TEOREM 197

OxeM)@(xX) =ab —» x =ab ™ IpX).-

TEOREM 19B

WxeM)(gq(x) =A —» x =A N IsX)-

Dokaz

Q) xeM & qgx) =A Sup.

(&) Js(x) = baxba = bax 1, D43,T43
A AN JIQXX) = aabax 2, T133
(()) - = aax 3, T8

® = X 4, T25

1,5 >--- T198.

7198 >--<

TEOREM 199
(VxeM)@C) *B —» X =B " Ip(x))-



T42,7T135,T8,T31 (analog T198) >-—-

TEOREM 200
(VxEM (@) =

T200 >---<
TEOREM 201

x<=D @)

TEOREM 202
(VxeM) (A ()

Dokaz

@ xeM & g

(@ AB” JOX)

€©))

Q)

®

®

1,6 >--- T202.
T202 >——-
TEOREM 203
(VxeM (@Qx) =
TEOREM 204

ab

|
v
X
]

|
v
X
|

B Jo(X)).-

=A™ Ip(X))*

X = AB ~ J@(x))-

ab

=AB ™ baxba
A ™ baxbabb
aabaxbabb
AxB

ba

X

—» X =BA N IJp(X))*

(VxeM) @lueM)(x = u ™ J5(X))™

Dokaz

T196,T7T198,T200,T202,T38 >--
(1) (vxeM) (BueM) (x

(2) (Sx,u,weM) (x
(3) BneEN)(J8 ()
(@ u w Qnba =w ™ Qnba

=0Qn(w ba)

G on(u w ba)
®) u -w

1,2,6 >— T204.

T204 >-—-<
TEOREM 205

=u g eO)*
unNde®® & x =w v Is(X))»
Qnba)

(xeM) ((@Muedd) (x = u " Ip (D).

Sup*

1,D43
2,T128
3,T133

4,78
5,1,7T25,T31

Sup*
2,T79,T194
3,2

4,T137
5,T75,T145



A

DEFINICIJA 45
(Vx,yeM) (a0

u <-> x =u”"J¢x)h

DEFINICIJA 46
(Yx,yeM) (ap GO

1
c

D45 > -
TEOREM 206

M ED(x = qg() ™ Is())-

T206 >---<
TEOREM 207
(VxeM)(x * gpCY * Ip(CA)=

T206,T207 >-—-—
TEOREM 208

(YxeM(@sC) * I = Qp Y ™ Ip ()=

DEFINICIJA 47

Qg = {u: XéM & u = cg)(x)}*
DEFINICIJA 48
Qj = {u: xeM & u = ch’(x)}-

D47»D451T196, T198,T200,T202 >——
TEOREM 209
fi, = {ofi> Af Bj AB} -

T209 > <
TEOREM 210
Qp = {fibj B> Ay DA}~

T209» T183 >
TEOREM 211

» X *u ™ JIpX).-

M,weC (U rw =2z <» 260 & urz & wrz &
MWeM)(urx & wrX

T211 >--<

TEOREM 212

Yu,WeQp)(u * w * z *-> ZASHP & UuUF z
WEM(u r x

W
F

r
X

z

Zr X))

&
—» Z F X))



T209,D43 >--
TEOREM 213

(Mu€Qs)(J8() = ba).

1213 >---<
TEOREM 214

(Vu€0p)Ip(U) = ab).

TEOREM 215

(VU€R8)Y(Q () = u)-

Dokaz

(D ueQt Sup.

@ u =9 ™ Ja( 1,T206
@) u =qgs@ w ba 2,1,T213

1,3,T145 >--T215.

T215 > <
TEOREM 216

(VueQp)(ap (W) = u).

T196-T202,045>D46,T3»T209»T210 >

TEOREM 217

(VxeM) ((Q(X) = ba «_ g is() " ba qgp(xX) =BA) &
@ =A  *» ga( = A ap) =A) &
@) =B g g5 T B ) =B ) &
@) =ab *-> qgs(x) = AB agp () = ab))-

T217 >-- T218-T220.
TEOREM 218

(xa) (1@s()) = 1) & d(@sC)) = d(X))-
TEOREM 219
(VxeM)(I(@pC)) = 1(xX) & d(@p(x)) = d()).

TEOREM 220
VX, yEM) (@sC) = qgy) «>» a(x) = a(y) ap ) = ()™
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TEOREM 221
(VxeM) (VF1,F2e{q,q8,qp) (FL(F2()) = FX())-

Dokaz
T37,7T215,T216 >-—-

(1) (VxeM)(TFE{qg,qe,apDFEFEC)) = FOD).-

@2 xeM & F1,F2<{q,qa,qp} & Fx(F2(X)) =u
A F1(F2(x)) = F-™u)

@ F2(FR2(x)) =F2@)

B F2(x) = F2@)

®) F1() = Fx(u

2,3,6 >—-T221.

TEOREM 222
(WXEM)(YNEN)(QNx = X -» n = 0).

Dokaz

(1) (Bu€EFI)OKEN+)(Q2k+1u =
(2) (Gs,te{a,b})(Q2k+1lst = eb)

G) Q2kst = stQ"

(¥ Q2kst = sttttt

(5) Q2kttst = ttsttttt

(6) Q Ktt = tttt

(M QkttQktt = tttt

® Oktt = tt & t=1t

(9 (VueQ)(VkeN*) - (Q2k+lu = u).

(10) G={n: n€Npoz & (VueG) -»(Qnu = u)}

(11) I€G

(12) (™n€ENpPOZ)(-1neG & (VMENPOZ)(M < n —» meG)
(13) (BkEN H(n = 2k)

(14) (Eu€Q)(Q2ku * u)

(15 QkuQku = uu

(16) (BkENpoz)(GTUEQD(k < n & Qnu = u)
(A7) (Vm,n€NpOZ)((m < n -> meEG) —»
10,11,17 (2.pr.Indukc.) >-—-—

|
(o
o/

neG)

&%)) G(V:ewlp%?VueG)(Qnu *u —»
(20) GeN+)(BueQ) @ nu = w)

n = 0)*

Sup*
2,1
3,T220
4,1
5,T220

Sup.
1 T3

2 T71,T70,D28
3 T65

4, T76

5, T8

6 T13,T75,T76
7, T12
1,8,T15,T16,T2

Def.

10.9

Sup.

12.10.9
13.12.10

14, T75,T76
15, T12,13
16,12,10

18,10
Sup.



(21) Qnu =u
(22) (YueQQ(VneN)(Qnu =u -> n = 0).

(23)(RxeM) (3neN) (Onx =)
(24) (aw6ii) (SineN) (Qm+nu=Qmu)
(25 Qnu =u

(26) n =0

23,26 >--- T222.

TEOREM 223
(VxeM)(R'neN)(x = anéx)) .
Dokaz
(1) xeM
(2) (HkeN)(q8C) =Qka(ag(x))
©) = Qka()

@ (VxeM) GIEN)(QC) = Qmag (X)) -

(5) (VxeM)(SneN)(x =0Onq(x)).

(6) @Exa(@:bi,reN)(x = Qmag() & x = QnaQ ()
(M Qmgs() = Qnag ()

(®) GleeN) (Qm+ka(x) = Qn+kq(x)) -

® Qet'ng(>) = q(x)

(A0) m =n.

5,6,10 >--- T223.

T223 >---<
TEOREM 224

(VxeM) @In€EN) (X = Qngp(X))-

DEFINICIJA 49

(VxeM) (VneN) (X (x) » X = Qnga(x))-

I
>S5

DEFINICIJA 50

xeM) (VrneEN) (Xp () X = Qnap())-

I
S

T223,D49 >——

TEOREM 225
X,,()
(VXEM (X = Q ag ())-

o7

20,T70
20,21,19

Sup.
23,T79,T75
24,T75,T72
25,22

Sup.

1,T79

2,T221
1,3,T69

T79,4,T75

Sup.
6
7,4,T69
8,T69,T75
9,T222
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T225 >---<
TEOREM 226
Xn(X)
M€ (x =Q p  gp(xX))=

TEOREM 227
(VxeM)(Xo(x) « 0 «» XCQe)°

Dokaz

T225,T68,D47
( ‘!v c ‘f\ ) P a4
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T225 >---<

TEOREM 226
X &)
(xEM)(x *Q p  gp())«

TEOREM 227
(EMD (X, () =0 +  x€Qg).

Dokaz
T225,7T68,D47 >——

(L) (VxEM)(AB(x) = 0 X€Qg )=
@ xiQ_
U*)
(5) x *Q8 " q (x)
X
@ x=Q =

(G) Xs(X) =0
1,2,5 >--T227.

T227 > <
TEOREM 228
(WxXEM(Ap(X) =0 *  xeQp)-

DEFINICIJA 51
(xEMD Pax) = (@s(x),Xs())).-

DEFINICIJA 52
WxeM)(pp ) = (@p ) ,AP (X)) -

D51,T209,T215,D49,T227,T72 >
TEOREM 229

ps€SbiJekc(M,Cis X N#
T229 > <
TEOREM 250
PpeSbijekc( "°p * N)*

Sup«
2,T225

5,T215
4,T222
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TEOREM 231

(xEM) (VneN) (o (Qnx) = ag£x))

Dokaz

(1) xeM A neN Sup*

@ q@Qnx) = q) 1, T78
3 gfiQnx) = gs) 2, T220
1,3, >---T231.

T231 >--<
TEOREM 232

(VxeM) (VneN) (apQ@n () = gp (X)) -

TEOREM 233

(VxeM)(\/neN)(Xo(an) = Xg(x) + n).

Dokaz

(D xeM & neN Sup™*
n+xX ()

(2) Qnx =Q 8 Qg 1, T225,T75
n+A (x) n

(3) =Q - q4(Q7x) 2,T231

(4) A,(Q™x) = n+A (x) 5,D49

1,4 >— T233.

T233 > <
TEOREM 234

(YxEM) (YneN) (Xp(@Qnx) = Xp(X) + n).

T225,T75,T231,T233 >--
TEOREM 235

(Vx,yeM)(XO(xy) = XB(X)+X8(y)+Xs (a8 (xX)as(y)))-

1235 >--<
TEOREM 236

(VX YyEM (Xp(y) = Xp OO +Xp () +Xp (ap CAap(Y))) -

TEOREM 237

(vx,yeM)(@8(x * y) = qfic) "~ q0(y) & y) = X8(X)+Xs(y))-
Dokaz

) x,yeM Sup*

X ) Xs )
@ x~y =Q qox) *Q 8 g ) 1,T223
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X OO**x )
(3) Xwy =Q 8 8 (@8 wgs(y))

@ agsx M y) » gfi(@8x) ™ dQ(Y)) &
Xs(x ~y) = X8(a8C) ™ dQ(y)) + Xs(X)

4,D47,T211,T215,T227 >—-—

G a8 My) =ags() N gii(y) & XQX ™ y)

1,5 >---T237.

T237 > <
TEOREM 238

VX, yEM(@pX M YY) =agp) N ap) & *pX

T237,T227 >--T239,T240.
TEOREM 239
(Vx,yeM)(x *y = x y€Q0)=

TEOREM 240
MEFIRD) (VXEM) ((u N x)eQ_ -* xeQ ).

17239 >--<
TEOREM 241

(WX, yEM) (X * y = x -* y€QpK

T240 >--<
TEOREM 242
Vu<«Qp)(VWxEM) (U * x>€fip —» X€Qp).

T206,T237,T227 >
TEOREM 243

(VxeM) (X8 (Ifl(X)) = X(X))=

T243,T194,T7225 >---
TEOREM 244
X 0

(VXEM)(J8(X) =0Q ba).

T243 > <
TEOREM 245

(xEM) Kp AP (X)) = xp (D) -

N\

2,T137,T75

Xfi¢y) 3,T231,T233

XfIX) + XO0(y)

) “XpC) + Xp())-



T244 5--<
TEOREM 246

(VxeMIp ) =Q p

TEOREM 247
(Vx,yeM) (Is (X

Dokaz

@ x,yeM

@ I ™Y
(€))

Q)

1,4 > T247.

T247 >---C
TEOREM 248

VX, y<=\) (Jp (X

DEFINICIJA 53

V(x1,x2),(y1,

(zi =xiwyi

DEFINICIJA 54
V(x1,x2),(y1,
(z1 =x1 «yl

TEOREM 249
(Vx, yEM) € B(x

Dokaz

@D x,yeM

@ Psx™y)
©)

€)

®

1,4 >--T249.

T249 >-—-<
TEOREM 250

(Vx, yeEM) (pp (X

X (X

ab).

~y) =309 N Jg())-

XH(X ™ y)

ba
_ 99 X O

ba ™~ Q
=JQ0) ™ I8

ba

Ay) - IpCd N Ip())-

y2)6(Qs x N))((x1,x2) +a (ylfy2)
& z2 =x2 +y2)}-

y2)6(Qp X N))((X1>x2) +p (yl»y2)
& 22 =x2 +y2)).

N

y) = RGO +B Pa(y))-

Qs ™ y)»Xg(x ™ y))

(@G " as(¥))»XsCY+XT(Y)))
@8(x),.Xa(x)) +a (as(y).XQ(¥))
PBC) +s PB(Y)

Ny) = Pp) +p Pp(y))-

61

Sup.

1, T225,T243,T194
2, T237,T145,T137
3, T244

= (z1,z2) >

= (z"29) <>

Sup.

1, D51

2, T257

3, T211,D53

4, D51
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1.7.3. DEFEKT m-BROJA

DEFINICIJA 55
(VXEW (G = A OY = A C9)-

DEFINICIJA 56
XM (NG = AgGD ~ A (X))=

D55,D56 -——-
TEOREM 251

(TXEMD (h(X) *-h(x)).

TEOREM 252
(YXEM(h(X) « 0 «>» 1) =dX)).

Dokaz

(D xiM ft As(X) = Ap(X) * n

@ Qng8() = Qnap ()

@G gsG) * gp)

@ a) *A v ax) «B

G 1) «dX

® (vxew(h(x) *0 IX) = dX)).-
T24,T30,T217,T72,T225,T226 (analog 6)
@ (WxEM(AKx) = dX) h(x) a o).
6,7 N—-T252.

TEOREM 253
(WXeEM) (h(x) = 1 I) =a & dX) = b).

Dokaz

(D xcM ft Ap(X) = A8(x) + 1
A X A )+

(2) @ afic) v %

@) 989 « Qap()

@ q8(xX) a AB 1t gp(xX) = ab

G I =a ft dXx) =b

6 (YXENGG) =1 —» I =a & dx bl .

T225,T226,T75,T217,T24,T30,D55 (analog 5)
@D (EN@AGE) aa & dX) *b —» h) 1
6,7 >--T253.

Sup.
1, T225,T226
2, T72
3, T217
4, T24,T30
1»D55» 5
Sup.
1, T225,T226
2, T75,T72
3, T217
4, T24,T30
1,D55,5



T225,T226,T75,T72,T217,T24,T30,D55 (analog T253) >--—--
TEOREM 254

VXEM (h() = -1 I) =b A dX) = a).

D55»T252-T254,T22,T28 >---T255,T256.
TEOREM 255

N"eurjekc”n1°071n

TEOREM 256
(WxEM)(g(X) = ba h) *-1 A g(xX) * ab h(xX) = 1A
q(x) = A <» h(xX) =0 A gxX) «B *» h(Xx) = 0).
T252-T254,T7220,D14 >-—-
TEOREM 257
(Vx6M) (YE€{q,q8,qp}) (h(F(X)) * h(x)h
TEOREM 258
(VxeM) (@8 * Qh”™ g p (X)) -
Dokaz
(1) XeMm Sup*
A ) A )
@ Q q8(x) s Q P ap ) 1,7T225,T226
A )-A )
@3 a8 *Qp 8 ap®) 2,T69,T75
(C)) = QhOCAgp ) 5,D55
1,4 >--T258.
T258 > <
TEOREM 259
(WXEM) (@Pp () = Q*™Xas (X)) -
TEOREM 260
(YxeM)(q,é(x) = P1+h(xX)5(x)d(x) = I(x)I(x)P1+h(x)).
Dokaz
() A =Pba *abP A B =Pab =baP A
AB = P2ab * abP2 A ba = P°ba = baPO D15,D16,T8

(2) (W€08)(u * Ph(u)+13(u)d(u) = I(U)T(UPh(u)+1) 1,T209,T256
2,7221,T257 >--T260.
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T260 >---<

TEOREM 261

(VxeM)(gp () =

TEOREM 262

(VxeM) (h(Dx) = h(x)).
Dokaz

(D) XxeMm

@ h(®x) = h(q(Dx))

©) = h(Da(x))

Q) = -hCO

1,4,T251 >-—- T262.

TEOREM 263

(VxeM) (g (0X) = Dgp () -
Dokaz

(D xeM

(@) gs(Dx) = P1+1ADx)d(Dx)d(Dx)
©) = pi+th(x)d(x)5(x)
@ = P1+N x)DAd(x)d(x)
o) = DP1+N (x)d(x)d(x)
® = Dgp

1,6 >-—-T263.

T263 >---<

TEOREM 264

(VxeM) (@p(Ox) = Dafi(x))=

TEOREM 265

(VXEM (X OxX) = A (X).-

Dokaz

XEM

@O A GO

@ Dx =DQp g X
X,(xX) p

(©)) =Qp Dg &
XX p

&) =Qp qa®)

® Ag®) = X, 00
1,5 >— T265.

P1F"™"x™M(O)A(X) = TG)TX)PL+HTI(X)).

Sup,

1,T257
2,T92,D30
3,T91,T256

1, T260
2, T262,T90
3, T15»T16, "

4, T93
1,5,T261

Sup,
1,T226
2,T95

3,T263
4,D49



T265 >--<
TEOREM 266
(WxeM) (X (Ox) = X (X))-

TEOREM 267
(Vxa @, GO = DA (x)I¢x)).

Dokaz
D) XeMm
X0 h
@ Ipoy = QOO
X h
(5) = DQ GO (X)ba
@ = DQh(x)Ig ()
1,4 > - T267.
T267 >---<
TEOREM 268

(VxEM) (@ g (<) = DRSCx M5 (x ))-

TEOREM 269

(X, YEM CRR(X ™ y) = XsCh4-Xe (W) +h(C)+h(y)-h(x £ y)).

Dokaz
A x,yeM A x~"Ny =2z

/ \
@ z=0Q px)+x p(y)qp(Z)

X (X)+X (¥)+h(2)
A =QP p as(@

@ Xg@ * XpC) ¢ Xp ) + h(@
® * Xs ) +Xs (Y)+h()+h(y)+h(2)
1,5,T251 >~ T269.

1269 >---<
TEOREM 270

(Vx,yeM)(Xp(x  y) = Xp()+Xp (¥)+hO)+h(y)-h(x * y)).

Sup.
1, T246,D55

2,T86
5,T75,T244

Sup.
1, T238,T158
2, T259,T75

3, D49
4, D55
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TEOREM 271
XM XOK) = -Xa(x) - D)-

Dokaz
T154 >--—-

Q) (VxXEM)((@s) ™ Kgfix) = ab).
1,T237,T227,T217 >—
@ (xeM)X (Kg (X)) = -1).
T225 >---

X )
@ (xEMKx =KQ 8  qg())e
3,T105 >---

-X &)
@ (YxeEM)(Kx =Q 8 Kgs(X))-
4,2,T233 ~—— T271.

T271 >--<
TEOREM 272

(VXEMD KXp(KX) = -Xp() - D).

D32,T265,T271 >---
TEOREM 273

(VxeM) Xg (1) = -X(x) - D).

T273 > <
TEOREM 274

VED X, = X, 00 - D).

T271,T274 -——-
TEOREM 275

X KK = X (1X))e

T275 >——<
TEOREM 276

(YxeM) (XP K =

|
<
o
~
X
o/
h



1.7.4,

TEOREM 277

0-RASTAV  m-BROJA

(YXEM) BIMTneN) (X = Pn d(xX)d(x)).-

Dokaz
(D) xeM

@ x

@ =P

Q 8 * Ph(x)+1 d(G)d(x)
2X  ()+h GO+
8

dC)d ()

(4) (YXEM) (BNEN) (X = Pn d(X)d(X)).-

B (XEM) Bk, mEN) (X=PI()d(X) & x=Pmd(x)d(x))

(®) Pk-m(d(x)d(x)) = 3(x)d(x)
() (NgEN)(k-m = 2g v k-m = 2g+l

(® Qo CAA()) * dCYA(xX) v

Qad(x)d(YdCAd() = dGAA(X)
® g=0 v dX) =dX)

(10) k *m
4,5,10

DEFINICIJA 57

——— T277.

(VxeM) (VnEN) (A(X) =n

D57,T277 >
TEOREM 278

WEM) (x = PX(X)

TEOREM 279

(VxeM)(A(X) =0

Dokaz

(D) XEM & X
@ x =dCYd()
vV X

(4) (VxeM) (X)) =0

(5)x=ba

<—m X = Pn dXX)d(X)).-

dOd ().

*—»

=0

= ab

X6QQ)-

-» X0

T19,T7T50,T54,D57,D17 >---

(5) (vx6M) (xeQO

4,5 >---T279.

-*m

X(x) = 0.

67

Sup.
1,T225,T260,T60

2,D23
1.3

Sup.

1,D19,T60
6

7,D023,D15,T8
8,T222,T78,T26
7,9,1T34,T2

Sup.

1,T278
2,T22,T28,T34
1,3,T19
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TEOREM 280
(WxeM)(A(X) =1 «» xeQt),

Dokaz
@D xeM & AX) =1

@ x
3 x
@ x
G x

PA()A(x)
dCdOdOCYAd)
dCd()

A v x =8B

©) (EMX(x) =1 —» XA™),

T18,T1T30,T8,D15,T17,T24,T51,T278 >---

(7)) (WxexeEfit —» AX) = 1),
6,7 >— T280.

T225,T260,D23,T60,D57 >-—-

TEOREM 281
(WxeM)(A(X) = 2X0(x) + h(xX) + 1).
T281 >---<
TEOREM 282
(WxeM)(AX) = 2Ap(X) ¢ h(x) + 1)»

T281,7282,T251 >-—-
TEOREM 283
(VXEMACD) = A0 + X)) + D),

TEOREM 284
(VxeM) (X = TGO TOOPX(X)).
Dokaz
@ xeM
2AQ0(xX)+h(x)+1
@ X = 8 dOCQd(x)
2X (X)
@ ~P 8 ags®
2X )
@ -~ a8)p 8
G = qO(X)pX(X)—h(X)-l
® = IO IIPXC)

1,6 >

- T284.

Sup,

1, T278

2, D15,T24,T17
3, T8

4,728

1,5,T18

Sup.

1,T278,T281
2,T260

3,D23,T71
4,T281
5,T260,T60
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T278,T284 >—-
TEOREM 285

(YX6M) (PXCO30)A(X) = 106D 1GOPX(X))

TEOREM 286

(YxeM) (VneN) (X(X) * 2n -1 *d(x)h

Dokaz

(D x€eM A neN A X(X) = 2n Sup*

@ 10CQTCOP2n * d(x)d(x)P2n 1, T285,D23,T71
@ 160 =dX) 2, T9

1,3,T33,T34 5--T286.

TEOREM 287
Vxe (4 160 = d(x)) . GrEN)(X() * 2n)).

Dokaz
) xeM A 1) * dX) Sup.
@ 100109 = 50Qd(x) 1»T17

) PXCOAC)A(X) = a(x)d(x)PX(X) 2,T285
1,3,T77 --——T287.

T278,T60 5—-
TEOREM 288
(YxeM) (VneN) (X(Pnx) = ntX(X))*

T284,T61 5—-—
TEOREM 289
(VxiM) (VREN) (X(XPN) * n + XOO))*

TEOREM 290

(WXEM)(X(Dx ) = XC))™*

Dokaz

(D) xeM Sup*

@) X(DOx) * X(PxP») 1, D29

(©)) =1+ XX -1 2, T288,T289

1,3 ~—-T290
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TEOREM 291

(VxeM) (X(Kx) = -X(Xx))=

Dokaz

(1) xeM

(@) Kx = KPX(X)3(x)d(x)

©) * P=X(Qd(0)d(x)a(x)d(x)
©) = PEXCQAd()al)

o) = P*X()d(Kx)d(Kx)

() X(Kx) = -X(x)
1,6 > - T291.

T113,T290,T291 >-—-
TEOREM 292

XEM (X(Ix) = -X(X)) -

TEOREM 293

(VX YEM (X(XY) = XCO + X(Y) -
Dokaz

@D x,yeM

@ xy = PX(x)a<x)d(x)I(x)1(x)PX(y)

G Xxy) s XCO+X(Y)+X@AACH T T(Y))
@ X(xy) * XOCY*XCy)+X(KACAT(Y)))

® = XCOHXY)-X@O1(Y))

1,5 >--T293.

X@COI(y))-

Supe

1j T2?8
2,T103,D31
3,T8
4,T101,T17
5,D57

Sup.
1,T278,T284
2,T288,T289
3,D31
1,4,T291
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1.8. PARTICIJE m-BROJEVA OBZIROM NA PREDZNAK DULJINE
m-BROJA

DEFINICIJA 58
My = {xs xeM & 0 < \&x)}.

DEFINICIJA 59
Mp = {x: xeM & 0 < Ap(x)}.

DEFINICIJA 60

Ms = {xs xeM & As(x) <

DEFINICIJA 61
M- = {x: xEM & Ap((x) < .

D58,D59,T229 > -
TEOREM 294

I\/ISUI\/B=M&‘II‘3ﬁMé=O&n 3_0&_”\/'6:0'

1294 >---<
TEOREM 295

I
e

mJum® =m & M*n M¥=0 & -IM*=0 & -M"
p P p p p p

TEOREM 296
xeM”é -» Dx€I\/B.

Dokaz

(1) xeMg Sup.
@ 0 < N\a®) 1,D58
B) 0 < X (O 2,7266

(4) DxeMp 3,D59
1,4 >---T296,
T296 > <

TEOREM 297
xeMp — DxeMgs,
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TEOREM 298

arly <> KxeMg

Dokaz

CD XiMg Sup.-

@) x M Kx = ab 1, T154
B) Xs(X) + Xs(Kx) = -1 2, 1237
@) XfiKx) <0 1,3,D58
) xeml  <»  Kxem- 1,5,D60

T154,T237,D58,D60 (analog 5)
(6) KxEM“ —m XeM*
5,6 >— T298.

1298 >--<

TEOREM 299

XEM* < » KXEM'.
P p

TEOREM 300
xXeMg <—» IxeMp.

Dokaz

(1) xeMg Sup.

(2) DxeMp 1, T296
(3) KDx6M” 2, T299
1,3,D32 -——-

(@) xeMg —» IxEM~

T296,T299 (analog 4)

(B) IxeEM™ xeM*

4,5 >—— T300.

17300 >---<
TEOREM 301

X€M’5 <> 4 IXEMg.

DEFINICIJA 62

MpOZ = m"8‘ n m’r')‘.

DEFINICIJA 63

M :M~SnM

neg o~

DEFINICIJA 64

VRapéz = & U W'



DEFINICIJA 65
Mﬁieneg' = M’; U M’B.
D58,D59,D52 >---

TEOREM 302

nepoz M Mpoz -

Dokaz

(1 xeM\Mpoz Sup.-

@ X8(x) <0 v y x) < 0 1, D58,D59,D62
(? xe(Ma U Mp) 2, D60,D61

(4 <M\Mpoz) C M nepoz. 1,3>D64

®) XOX) <0 v Ap(X <O 5, D64 ,D60,D61
(7) xeM\Mpoz 6, D58,D59,D62
@) “nepoz ~ (MX*“poz> 5,7

4,8 v T?02.

D58-D65 (analog T302)

TEOREM 303

Mheg = MMM peneg®

D58~D65,T265,T266 >

TEOREM 304

(VWe(MIOOZ 'Mneg ’Mnepoz ’Mneneg P (xew DxeW)e

TEOREM 305

X=€Mpoz <) KxeMneg

Dokaz

(1) xe“poz Sup.-

@ 0< XX ft 0< X X 1, D62 ,D58,D59
(™ Xs(Kx) <0 4 X (Kx) <0 2, T271,T272
<4) x6“poz -*= Kxe‘“neg 3, D63,D60,D61
(5) KxeMneg Sup.

®) Xs(Kx) <0 & Xp(Kx) <O 5, D63,D60,D61
@ AKs(xX)-1 <0 & A -1 <0 6, 1271,T272
@ 0 <X & 0 < Xp®) 7

(9) KxeMneg -» xeMpoz 5,8,D58,D59,D62

4,9 >-——T7?05.
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T113,T304,T305 >--
TEOREM 306

XeMpoy neg

TEOREM 307

— » Koc%

N N
nepoz neg -

Dokaz

(@) xeMneneg
(2 0<X8(X) v 0 < Xp®x

B 0 < (Xa(Kx)-I) v 0 < (-Xp(Kx)-D

@ Xg(K) <0 V Xy(K<) < 0
() XEMoneq —>  KXENAGPYT.

(6) xEMnepoz * n ™ “neneg
(7) Kx*Mneg

(8) x<Mpoz
(9 -nx«Mnepoz

(10) x€|\‘11repog(r —» KxeMeneg
5,10 >---T307.

T113,T304,T307
TEOREM 308

X€|V"nepoz IX€M’neneg

TEOREM 309
(VxeM)(x€!\/¥3o,z «@ 0 < AX).

Dokaz

(1) xeMpoz

2 0 <Xs(®X) & 0< X
(3) X€Mpoz A(xX) > 0.

@ xeM & 0 < AX)
B 0O<As(X) & 0< AP

(6) (VxeM)(O0 < A(X) —» x€EMpoz”"™

3,6 >--T309«

Sup«

1, D65,D58,D59
2, T271,T272

3

1,4,064,D60,D61

Sup«

6, T303
7, T305
8,T302

6,9

Sup.

1,D62,D58,D59
1,7T283

Sup.
4,T281,T282,T255
4,5,D62,D58,D59

D58-D65,T281-T283,T255 (analog T309) >--- T310-T312.

TEOREM 310

(VxEM) (xeM,,  *=»  AG) < O)«



TEOREM 311
(VX€EM) (xeMnepoz » X(X) < 0).

TEOREM 312
(VXEM) (xEMneneg *~» 0 < X(X))-

1.9. UREDENJE m-B ROJEVA
1.9.1. RELACIJE a-MANJE 1 p-MANJE

DEFINICIJA 66
(WX, yEM (X <sy <» (ESTzeMg)(x »

N
I

<
Ro
\/
X

DEFINICIJA 67

(Wx,yeM)(x <p y @GzeEMp)(X Mz =y & nx

DEFINICIJA 68
(vx,yeM)(x <g y X<gy Vv X =y)).

DEFINICIJA 69
(WX, YEM) (X <p Yy » X<py VvV X =Yy)).

D66,D68 >—
TEOREM 313
(VxeM) (x Fg X) -

T313 >---<
TEOREM 314

(VxeM) (X <p X).

TEOREM 315

(WX, yEM(X <gy & y <8 x = x =y).
Dokaz

) x,yeM & x <fly & y <a x

2 Grw,zeDX *"w =y & y Nz =X)
@ a) ra@y) & a@y r ax)

@ aCd = ady)

®) 98 = q8(y)-

®) x~w "Nz =x

(7) *8(x) & *e(w) &*s(z) =

y))-

¥))-

75

Sup.
1,D66
2,T181
3,T185
4,T220

6,T237
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® Xgw) =Ag@ =0. 7,2,D58
© Aax) +AgW) =Ag(y) 2,T237
0o Aged =Ag®) 9,8

ay x =y 4,10,T229

1,11 > -T315

T315 >-—-<
TEOREM 316
(X, yeM)(X <py & y <p x =-> x =y).

TEOREM 317
(Wx,y,zeM)(x <8y A y<gz -» X <8 z).

Dokaz

@O x,y,zeM & x <fly A y <8 z Sup«
@)@u,veMH) (X "u =y A y~™rv =2 1, D68,D66
@G x*urv=z A (U™ V)EMg 2, D58

1,3,D66,D68 5---T317.

T317 >—-
TEOREM 318
(Yx,y,zZEM (X <py A y <p z X <p 2).

D66,D68,T145 >-—-
TEOREM 319
(Yx,y«M)(x <8 y » (BzeEM)(X N z = y)).

T319 >---<
TEOREM 320
(YX,yEM(X <py «—» (BzeMp)(X ™ z = y)K

T145»T319 >-—-
TEOREM 321
(Vx€Mg)(ba <8 x).

T321 >--cC
TEOREM 322
(Yx€EMp) (@b <p x)«
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TEOREM 323

(YXEM~) (X <p ba)*

Dokaz

D) xeM- Sup.

(@ x N Kx =ba ft Kx€Mp 1,T155,T299

1,2,T320 >-- T323.

T323 > <
TEOREM 324

(VX€M6)(X < ab).

TEOREM 325

(WX, yEM (X <8y «» (s() r q8(Y) & XAG) - Xg(¥)))-
Dokaz

D x,y&M & x <fly Sup*

Q@ Erzig x N z =y) 1, T319
@ asC) " g8 * q8(Y) & xg(X)+xs(2) = xe(y) 2,  T237
4 (vx,ye)(x <fly -» qgCO t qfiy) &

XA < XACY))» 1,2,T176,D58
T319,T237,T176,D58 (analog 4) >-—-

GY(x,yEM(@sC) r a8() & Xg() 5 Xf) * <8 y)»
4,5 >--T325

T325 >--<
TEOREM 326

(YX,yEM)(X <p ¥y @ r gp) & Xp(x) < XpMWM)*

T319,T325,T176 5-—-
TEOREM 327
(YX,YEM(X <ey «» X ry ft XA < Xgy))-

1327 >---<
TEOREM 328

(Yx,yeM) (X <py <» XrFy & XpX) < Xp(¥)).-

T327,T181,T256,T186~T189 >-
TEOREM 329

(Yx,yeM)(x <8y h() < h(y))-
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1329 >---<

TEOREM 330

WX, yEM(X <py —» hX) < Tiy))-
TEOREM 331

(Vx,yeM)(X <jy <«» Dx <p Dy) .

Dokaz

@ x,yeM ft x <8y
) (ffzemHx N z *y
) Dx
(4) (V. yEM(x g Y
D66,T157,T296,T84,D67
G) (¥x,yeM)(Dx <p Dy
4,5 >--T331.

T331 -——-
TEOREM 332
x,yeM)(X <py <—»
TEOREM 333

(YX,yEM)-> (x <e y &

Dokaz

) xX,yeM & x <8y

1, D68,D69,T327-T330

@ xry ftXfiX) <
y F x & Xp(y) <

2, T175,7T181,T251 >-

G ax) r aq@y) ft

3, T256,T189 >-

@) ) « ay)

2,3,D55 5-—-

®G) XQ) < Xs()

2,3,5 >—

® X009 * xfi(y)

4, T220,6,T229

D x>y

1,7,D66,D67 T333

Dz * Dy ft DzeMp ft

h(x)

ft »x =y)

-1Dx = Dy
Dy).
(analog 4) >-—-

| X <gVy)-

Dx <
p

Dx <fl Dy).

y <p X).

ft yv <px

>

X0¢) & hG) 5 h(y) >
XpC) & h@y) < h()

= h(y)

Sup*

1, D66

2, T157 ,T296,T84
1,3,D67

Sup.



T333 >—
TEOREM 334

(WX, yEM (X <s y —» —i(y <p xX))*

T334 >— <
TEOREM 335
WX, yeM)(x <py -* -y <g xX))*

TEOREM 336
(I, yeM(x <ey —» (YZEM((X * z) <q (Y " 2)))-

Dokaz

) x,yéM A x <8y

@ @BwEMg)(X * w =y)
AWNVzEM(x "z w=y"rZz)
@G@HWNVzEM)(x Mz < y N z)
1,3 >— T336.

T336 >— <
TEOREM 337
X, yeM) (X <py —» (VZE((X ™ 2) <p (¥ - 2Z))).

DEFINICIJA 70
(WX, yEM (X cgy <» x<gy A (VZEW((x <g z A z <8
=z v z-=

DEFINICIJA 71
(WX, yEM)(x c vy » X < y & (VzeM)((x < z A z <p
\Y tf

XB8Bz v z-=
TEOREM 338
(Y, yeM)(x cgy —» (VnEN)(Qnx cg Qny))*
Dokaz

(O x,yEM & x cgy
@QGrze\g(x Mz =y & -IX = y).
B)(NEN) (X ™ z ™~ Qnba =y ™ Qnba)
(@) (VnEN)(QOnx ™ z = Qny)
G((rx,yeM)(x cgy -> (VnEN)(Qnx <0 Qny))*
®) x,ycM & x c8y &

GizEM(STneN) (Onx <g z & z <g Qny)

79

Sup*
1,T319

3.T319

Sup*
1,D70,D66
2

3,T151
1,2,4,D66

Sup.
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) (&u,WeMg)(Qnx Wwu =z 8 zv>wQny 6, T319

@ Oon(x ™ u”™w =Qny 7, T137
O xV¥u w-=y 8,T72
(10) x <p X u 8 XWwu=<sy 9,7,T319
A1) x=X~U V x”™~u =y 10.6, D70
(12) Qnx = z v z = Qny 11.7, T137

5.6.12.D70 >--T338.

T338 -——--
TEOREM 339

(YX,y€M)(x cp y (YneN) (Qnx cp Qny)).

TEOREM 340
(VxeM)(x cg Qx).
Dokaz
(1) (VxEM)(x <e QXx). D66,T152,T222
@ x,yeM & x <fly & y <Q Q) Sup.
B sx) r Qsy) &Xfix) < xs(y) &
q8(Y) r g8(C> & Xfily) < X8(Xx) + 1 2,T325,T231,T233

@) gs(x) = qil(y) & X8(X)=Xs(y) v XB(y)=Xg(x)+l 3,T185,T220
G XyeM((X <sy & y <QQ) -»

X =y Vv y=0x)) 2,4,T229,T233
1,5,D70 > -T340.

T340 > <
TEOREM 341

(WxeM)(x Cp Qx).

TEOREM 342

Wx,yeM(x ¢ y -  (y 5 Qx v (qfi) c8 qQ(y) & XAC) = Xf(Yy))))-

Dokaz

D70,T325 5-—-

M x,yeM)(x ¢y @) =09g8¢) & XAG) < xs(y>) Vv
(@O <8 ag(y) * Xs(x) = Xg(y)))

@ x,yEM & xcsy & gQO) s qgfiy) =u Sup.-

2,1 >~

(B) (BkENpoz)(X8(X) + k * XQ(Y))-



8l

3,T338 (>—)-

A_(x A_(x)+1 Xs(x)+1 XA()+k
(4) Q% u <g Q o u U g Q u
4,2,D70,T69,T75 >-—-

GB) u=Qu v u =Qk™lu

5,T222 2—-
G k-1=0
6,3

M xQ) = x80O+I
2,7,7225,T75,D25 >-—-
@, yeM(x Cgy A gficd = QG -» y * ).

O® x,yeM A xCgy A Xg®xX) = X8() -m A
Bze)(@ ) < z A z < qfi(y)) Sup*

9,T336,T151 5-—-

(10) Qmgs(X) <s Qmz & Qmz <s Qmq8(y)

10,9,D70 -———

(11) Qmgs() = Qmz v Qmz = Qmgs(y)

11.T72 5—

(A2 gsG) *z v z =090

9,12,1,D70 >-—-

(13) (x.yeM(x g ¥y A X G *X(¥) -»
gs(x) cs 4as(y))

1,8,13 -———

ADHVx,yeM)(x cQy -» (y =0x v (@s¢) cfl (gfiy) A
XQ() = Xs(¥))))

14,T340,T338 T342.

T342 3———-
TEOREM 343
x,yeM)(x cpy « (y=0x v (@) cp apy) A Xp(X)*Xp(¥))))-

TEOREM 344
ba c8 A*

Dokaz
T14,T2 >——
@D 4a((a * aa)
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1,D66,D68,T321 >
(2) ba <1l A.

R(BxeM)(ba <e X & X *0 A)
(@ ba r qg( Tt 0 = Ag0O) ft
Qs r A * Xa(®) <O
B <alf dx) Y a =dx)) ft

(dX) <alfa v dX) =a ft Agx) =0

(6) d(X) *a ft « °s
(D x *ba v x =A
D70,2,3,7 5--T344*

T344 -———<
TEOREM 345
ab 0~ B*

Sup*
3,T325,T181,T227
4,T183

5,D40,T227
6,T209

T14,72,D66,D68,T321,T325,T181,T227,T183,T209,D70

(analog T344) >—
TEOREM 346
ba cfl B*

T346 > <
TEOREM 347
ab Cp A#

TEOREM 348
A Cg AB*

Dokaz
T14,72,D66,T124 >—
() A<s AB

(2) (xeM)(A <B x & x <e AB)

@G Args®x) & 0 < Agx)
qgs() r AB & As(X) <O

@ <alfa v 1) =a ft

(@ <alf K*)" v 1(*) * « & Ae() =0

G IX) =a & Xe&ds
®) x =A v x =AB
D70,1,3,6 >  T348.

Sup*

2,T325,T227

3,T183
4, D40,T227
5, T209



T348 > <
TEOREM 349
B cp BA.

T14,72,D066,T124,7T325,T227,T183,D40,T209,D70 (analog T348) >
TEOREM 350
B cq ABe

T350 >---<

TEOREM 351
A Cp BA.

T325,7189 >-—-
TEOREM 352
G (A <8B) & - (B <gA.

T352 >---cC
TEOREM 353
n B<pA A n (A<pB).

DEFINICIJA 72
IXGYEM) (IX,Y]s = {z: zeM A X <g z <QVY})-

DEFINICIJA 73
(VGYEM(IX,ylp m {zs Z&M A X <p z <p y}).

PRIMJERI
256 [aBa, ABAB]g = {aBa, ab, A, AB, ABA,ABAB}.
257 [A, Ale = {A}.

258 [ab, BA]g * O.

259 [ab, BA]p * {ab, A, B, BA}.
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1344 ,7346,T348%1350,T352,D70,T358,T340,T342,D72
TEOREM 354

ABAB

ABA BAB

7

s

€ sHaeee dgr.

—

([bABa,ABAB]e, <q

ab
ba
aBa bADb
bABa
T354 -—-—-<
TEOREM 355
BABA

ABA BAB

B

5

[ aBAb.BABA]p,

& SHasse dgr.( Sp

&5

\

aBa bAb

abAb



1.9.2, RELACIJA "manje”

DEFINICIJA 74
wx,yeM) (X <y < X <gy & X <p Y.

D74,D66,D67 >-—-—

TEOREM 556
< =< n<

DEFINICIJA 75
(Vx,yeM(x <y » X <Yy V X *y).

T556,T354,T355,D75 >-—-—

TEOREM 557
ABABoO OBABA
ABAO OBAB
ABo OBA
o Ab
abo Oba = X
aBao AbAb
aBAbée ObABa
aBABao ObABADb

aBABADbO ObABABa

X6S Hasae dgr.((x! xeM X< i 4)> <

D74,D75,T515-T518 >  T558-T560.
TEOREM 558
(VXEM (x < X).

TEOREM 559
x,yeM)((x <y & y<XxX) —-» X -Y).

TEOREM 560
VXY, ZEM((X <y &y <z ) 7= X< 2).

T556,T525,T326)T185»D55»T256 >--
TEOREM 361

(Vx,yeM)(x <y » 9GO0 = a®y) & XQG) s *s())*

).
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T361 >--<
TEOREM 362

x,yeM)(x <y q)

ay) & XpCG) < Xp(¥)))-

T361,T362,T283 >-——
TEOREM 363

(WX, yEM) (X <y (€9

ay) & X&) < X(Y))-

1.10. RELACIJE KONGRUENCIJE SISTEMA M

DEFINICIJA 76
WXL, YEM)(VNEN) (X On y  «-> (FIENH)(Qknx =y Vv X = Qkny)).

TEOREM 364
VX, yEM) (VNEN) (X Cn y #-* gs(xX)=gs(y) & Xg(X) — Xg(y)(mod n)).

Dokaz

) x,yEM & neN & % en y Sup.
@ Bk<=N+)(Qknx =y v x = Qkny) 1,D76
(3 (qa@knx) =98¢) v a3 = ags@kny)) &

(kn+XO(x) = Xo(y) v Xs(X) = kn + Xg®)) 2,T233
@ asx =agsy) & XgC9) —* Xg(y)(mod n) 3.T231
G, y<=M)(VNEN)(X Gn'y -» gsX) = gs(y) &

Xg() *= XQ(y)(mod n)). 1#4

D76,T231,T233 (analog 5) >---
©)(Vx,yeM) (VnEN) ((q8() = qQ(y) &

Xs@x) ™ XQ(y)(mod n)) -» x On y).
5,6 >—— T364.

T364 >---<
TEOREM 365
(VXGYEM) (VREN) (X On y «=» gp(X)=ap () & Xp () " X p(y)(mod n)).



T364,T365,T283 >-—-
TEOREM 366

(Vx,yeM)(VnEN)(x On y < *q(x) = qy) & X)) = X(y)(rood n)).

PRIMJERI
260 BAB 00 BBAAB* 261 A 01 ABABA;
262 ba 0™ BABABAjJ bAb O™ BABAB.

T366 >---
TEOREM 367
(WX, YEM)(VneN) (X OR'y <» x 0. n y).

T364,T229 >-—-
TEOREM 368

(WX, yEM)(x 0Q y > X

y)-

T366,T185 >-—-—

teorem 369

(WX,YEM (X OV"Y «—» X Try & yr X).

T366 >--- T370-T372.
TEOREM 370

(VxeM) (VneN) (x On X).

TEOREM 371
x,yeM)(VneN)(x On y -3 y OR xK

TEOREM 372

(Vx,y,zEM)(VNEN) (X On y & y ©n z

T366,T39,T293 >---
TEOREM 373
(Vx,y,z,weM)(VNEN)(Xx Ony & z On w

T364,T237 >---
TEOREM 374
(YX,y,z,Ww€M)(VneN)(Xx Ony & z Gh w

T374 >---<
TEOREM 375
(Vx,y,z,WEM)(YNEN)(x Ony & z ORw

-»A 01 B.

XZ Oh YW).

X’\ZOﬁy’\W)°

x’\zohy’\w).
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T366,T37 5—-
TEOREM 376
(Vu,v€Q)(VneN)(u 9r v —» u = V).

T181,T366 >---
TEOREM 377
Yx,y,z, WeM)(VREND (X 9n'y & z9nw & Xrz) —» y r w.

T366,T288-T292 >-
TEOREM 378

VX, YEM) (VNEN) (X 9n y (VFe{P1,Pd,Q,D,K,1})(F(X) 9n F()).

DEFINICIJA 77
(WXEM) (VneN)(IxIn = {y:yeM & vy 9n x}).

DEFINICIJA 78
(VnEN)(M(ONn) = Xt xeM & X = [x|n}).-

DEFINICIJA 79
(VnEN) (Q(9n) = {]ba|n, Jab|n, JAIn, [BIn}).

DEFINICIJA 80
(Vn€N+)(""n = (M(9n), Q(On), A»« ,a ,p, d, K, 1T ) «»
Vel A, N r PEIXIn, lyIneMOn)CIXIn A Jyln= X 8 y[n) &

™MD, K, T PDWIXINEMON)YCHIXIN = T+x])).



1.11. m-S I1STEM
1.11.1. UTEMELJENJE 1 RED m-SISTEMA

DEFINICIJA 81

= {X: XCM* ft (s,t€{a,b} — » steX) &
(x,yeX — » xyeX) ft
((HeS & HCX & (,t€{a,b} > steH) &
(.yeH -~ xy<H))- * H =X &
(Vp,r,s,t€{a,bP) VX, yEX) ((prx = sty v
Xrp = yts - » p = 98). ft

((Vs,te{a,bP)(?x,yeX)(stx = sty - »
X =y v stx =X Vv ety =Yy)) ft

((Vs,te{a,bP)(Vx,yeX)(xst = yst - »
X =y Vv xst =x v y8t =y))}.

DEFINICIJA 82
Sm-eist.(<a>b,) = (<X.A)1 XeSm}.

DEFINICIJA 83
D4m~D48m su izreke koje se dobivaju iz definicija 4-48 sistema M,
tako da se svugdje umjesto M uvrsti X i doda (VXeSm), ili ukoli-

ko M ne dolazi u doticnoj definiciji, onda sve ostaje nepromje-
nJeno.

PRIMJERI
263 D31m glasi: (VXeSm)(VxeX)(Kx = 1()xd(x));

D48m glasi: (VXeSm)(@Qp = {u: xeX & u * qp(x)})-

264 D4m glasi: Q = {x: s,te{a,b} — » x * sAt).

DEFINICIJA 84

Tlm—TIIm i T13m—T221m su i1zreke kqlp se dobivaju iz teorema
2-11, resp. 13-221 sistema M, tako da se svugdje umjesto M uvr-
sti X 1 doda (VXeSm), ili ukoliko M ne dolazi u doti¢nom teore-

mu onda sve ostaje nepromJenJeno.
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PRIMJERI
265 T59m glasi: (VXeSm)(Vx,yeX)(VneN)(xX(Pny) = (XPn)y).

266 T8 glasi: (r,s,te{a,b})(rsrt = rt & rsts = rs).

D81-D84,0D1-D48,TI-TH1,T13-T221 >-—-
TEOREM 379

TIm—TIIm i T13m—T221m su istinite i1zreke, ti. teoremi koj,i vri-
jede za svako (X, A )«S gis.~({a,b}).

TEOREM 380
(VXeSm)(VkeN)(xeX & kx = x -*» (VneN)(VzeX)(Qknz = z)).
Dokaz
(1) keN & X€Sm & xeX & Qkx = x Sup.-
(2) (GTgeN)(&s, tef{a,b} )(QkQgst = Qgst) 1, T379,T79m ,T38m
) Qkst = st 2, T69m ,T75m
(@ Q stss = 8tss 3
() Qkss = si 4TS
(6) DQkss = Dsi 5
(7 Qk ss = ss 6,T95p ,T86R , T17R
(8) Q SS8% ='8S88 & (Q SS8S = 888s 7
(O QkisS =11 & Qkss = ss 8,T8m
(10)(VXeSm Y(VkeN) (xeX & \erx =X ->

VueQ)(@Q u = u)). 1,2,5,7,9,T3m
10,T379,T79m ,T75n ,T37m >---T380.

c

TEOREM 381
(VGeS)(VXESm)(Gx = {n: neN & (WxeX)(Qnx = x)}) -»

(&TKEN+) (VNEGX )0sz|n)) v Gx = {0}

Dokaz

(1) "Theorem 6. Any non void set of integers closed under addi~
tion and subtraction either consists of zero alone or else
contains a least positive element and consists of ali the
multiples of this iInteger"”._(G.Birkhoff - S_M.Lane, A Survey
of modern algebra, 1959, str.17).

(2) (VXer§m)(6(l3Y = {n: neN & (VxEX)(Qnx = xX)}) Def.

(B)(BX6S )(3g,neN)(giGx & neGx> Sup.
4 Gx,yeX)(Qgx =x & Qny =y). 3,2
B) Onx = x 4.T7380

() QgOnx = x & Qgx = Qnx 4,5
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(M Qg+nx « x ft = X 6,T69m ,T75m

(8) (YXESm)(Gx = {n: neN Tt (SxeX)(Qnx = x)} ft ” m
g,n€Gx —>m (g+tn)eGx ft (g-n)eGx). 2,3#7

1,8 >— T381.

DEFINICIJA 85
(VXeSm)(Fper(X) = k9 ako 1 samo ako k je jedinstveno odredeni
nenegativni broj iz teorema 581 ili Gx =0 & k = o.

D85,T381 >--
TEOREM 382

(VXTRHVKN+)(Fpe 0O = k- »*m (BxOQkx =) &
VneN) (Vy€X)(Qny =y) -> k[n))).

AKSIOM 2
(VKENA™)(FFIXESn ) (Fper () = K).

DEFINICIJA 86
(VXeSm) (V<EN*) (Mx = X Fper(X) = *>e

KONVENCIJA 1
G*EN+HYGm Yy ) #—— >

D86,T382,A2,T380 >  T383-T386.
TEOREM 383
(WVXESM)(Fper(X) =0 (VxeX) (VneN) (Qnx = X n = 0)).

TEOREM 384
(VxEMX) (VNEN) (QN* X « X).

TEOREM 385
(VXEMX) (Vm,nEN)(Qmx * Qnx «—» n £ n(nod *)).

TEOREM 386
(VXEN2D) (VNEN) (Qnx = q(X) *In).

T386,T3m,T385 >---T387,T388.
TEOREM 387
(VXeSm)(VneNpOZ_)(Fper(X) =n kQ) = 4n).

TEOREM 388
(WXism)(Fper(x) =0 KOX) = «,,).
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1.11.2. 1ZOMORFIZAM m-SISTEMA n-tog REDA I m-SISTEMA
KLASA OSTATAKA m-BROJEVA MODULO n.

TEOREM 389
(VXCSm)(Fper(X) =0 (Wx€X)(Yp,r,8,te{a,b})(xx = prst

xx=pt A p=s V r =1))),

Dokaz
(1D x€Mg A (3p,r,s,te(a,b))(xx = prst) Sup.
@ ax) = pt 1, T59m
(B)(Hn«N) (X = Qnpt) 2, T79m
(4 Q2npt = prst 5,1,T75m,T8m
G (=5 A “1r =19 Sup.
(®) Q2npt =ptpt A F =T v p=t 4,5,D5m»1
7 Q2npp = pppp V. QPP = pppp 6
(® Q2npp =Q’pp V Q2npp = Qpp 7»T641Q,D15m , T8 1
© Q2n+ipp = pp v B2 1pp = pF 8,T69m , T75m
(10) 2n+l =0 V. 2n-1 =0 9,1,T383
A n = - j Vv N 10
a2 p =8 V r=t 5,11,3
(15) Q2npt = pt 4,3.2,T8
49 n =0 13,1,T383
(15) x = pt 14,3
(16) (YxeEMO)(Yp,r,s,t€ {a,b} )(xx = prst =
X *pt A ((p =8 v (r=1)). 1,12,15

T12,7T379,T222,T382 5--

(A7) (VXESM) (YXEX) (Yp,r,8t€{a,b}P)(xx = prst =
(x=pt & ((P=8) v (r=t))) -* Fper(X) = °-

D86,16,17 -T389.

D2,A1,D82,T389
TEOREM 390
= M.

D80,0b86,T364-T378,T379-T386,T389
TEOREM 391

(Yn€N+) (o™ i1zomorfan je sa sistemom (Mn,Q, A ,~,™,r,D,K,1)).



1.11.3. m-SISTEM PRVOG REDA

T379»T3 ,T4,, ,086,T387 > -

TEOREM 392
Mx = O.

TEOREM 393
(WX,yEML)(X ry & yrx —* x =y).

Dokaz

) x,yeM» ft XxXry & yrx

(2) GMmrEN)X « Qma(x) & y * Qna(y))
@ x=aq0() Tt y =a®y)

@ x =y

1,4 5--T393.

1392,T3,»T393,T186 41189, >

TEOREM 394
ab

"“‘Q’bb & SHasee dgr.(Ml’r)'

ba

T79,.»T386 3-—-

TEOREM 395
(VxeMD) (@) = X).

TEOREM 396
(VXEML) (Kx * DX).

Dokaz

Q) Xewr

(@ Dgq(x) = Dx
@) qKx) = Dx
(4) Kx = Dx
1,4 3-—-T396.

T113m ,T396 3--—-

TEOREM 397
(WEML)(Ix = x).

Sup.

1,T79m

2,1,7T384
1,3,T185m

Sup.

1, T395

2, T102m

3, T100m ,T395



A

T395#T379,T168m-T174I>———

TEOREM 398

(vx,yf Nx =x Tt x"Mx=x ft xM(y~*"x)=x ft
XN YN X)=x ft x @e(y*"2DD=x wy) " x 2 *f

Xt yNr zZFENY) P XD MYy =X =X Ny = X))

T398,T154mT155m >——

TEOREM 399

Sistem (MW» *> K) je CetverocClana distributivna reSetka, od-
nosno CetveroClana Boole-ova algebra, odnosno dvogeneratorska
slobodna reSetka (free lattice).

1.11.4. MODULI m-SISTEMA

DEFINICIJA 87
VuBQ)(Modu (MID = £ x*M% & q(x) = u}).

D87,T109m >-——
TEOREM 400
(VueQ) (xEModu (Mx) Ix€EModu (MID).

TEOREM 401
(YNEN+) (YUEQ) (Modu (M1D), A )<«Sclkl  r>(*)).

Dokaz
(1) (VueQ)(V*EN+)(Fu % = {(x,n): xEModu (M) &

BneEN)(x = Qnq(u})). Def.
(2) (3xEModu (MD))(a:g,heEN)((X,9)€Fw-ll &  (X,h)€EFu=ll) Sup.
2.1, D87 5-

(3 Qfu = Qgu
3.2,T38 5-—-
(4) (Yx€EModu (MID) (vyg,h€EN) ((X,9)€EFIl & (X,h)eFu>R — »

g es h(mod x)) -

(5) 0g,h€N) (ffx,yEModu(MID)(g = h(mod k) ft *

(y»h)€Fu10 Sup.
5,1,D87 >~
® x =Qgu & y =0Q%

5,6, T38 -
(7)) (vg,h€N) (Vx,yEModu (MID)(g = h(mod *) & (X,g)eFuwll *

(y>h)€Fu=1l) X = Yy).



1,4,7 ~—
(8) (Yta.0)(Y»«N)(rUFLEESbI jGkc(Modu (HID ,NO-n))).
(9) (3Bx,yeModu (M1Q)(3g,heN)((x,9)€Fu>x A (y,h)€Fu=ll). Sup.
9,1,D87 5—-
(10) xy = QguQhu
10,7755 T13,5 5
(A1) xy = Qgthu
11,9,1,D3m 5—
(12) (Yu«Q) (YxcN*) (YxFfyclfodu @I (Yg, hFN) ((x9y)«F A
(y,h)€Fu>x (xAy , g+h) 6Fu>ji).

1,8,12 >--T401.

D87,7T385,T217m ,T137m ,T75m (analog T401)s—-
TEOREM 402

(V*EN+) (VUEQ) ((Modu (Mn), ~ JEScikl .gr.(*))#

T402 >---c
TEOREM 403
(YXEN+) (YUE0) ((Modu (M7D), « >EScikl.gr.(*>>e

95

TEOREM 404

VUEQ) (WX, yEModu (MID)(xy = X "y = X Ny u=A v u=B).
Dokaz

Q) x,yEModu(Mx) A Xy =X "~y s X Ay Sup.

1, D86,T79m ,T75m ,T137n >—

(2) Um,n€N)(Qm+nuu = Qm+n(u ™ u) = Qm+n(u « u))

2, Tr2 ,T13  >-

G u=uru=unu

1,3,T124 ,T125m >_—

(4) (vx,yeModuMID)(Xy = x*y =x"y —*u=A v u =),

B) x,yEModu(Mx) & (U =A v u = B). Sup.

5,T79m ,T75m ,T157m ,T124m ,T125m >—-—
®) xy =Qntmu A x ™y =Qntmu A X ™~y =Qn+mu
5,6,4 5—T404.
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1.11.5. IDEALI m-SISTEMA

DEFINICIJA 88
(YueQ)(s-lIdu(MiD) = {x: xXEM* & U r x}).

DEFINICIJA 89
ueQ)(p-ldu(MiD) = {x: xeMA & u r x}).

D88, T178m >-—-
TEOREM 405
(VU6Fi) (UES.. 1du (VD).

T405 >---<

TEOREM 406

(VU€Q) (U€p . Idu (MID).

TEOREM 407

(VUEQ) (X, yES. Idu(MID —» (X ™ y)€8.1du(MD)).

Dokaz

) ueQ & Xx,y€ES.1du(M7D) Sup.-

@D urx & ury 1, D88
G vV Ir xXxmy ft qgu”™y =q 2, T180 D42
@ au "y) rax*y) 3, il
G q) r ax * y) 4,3

® ur X «vy 5,T18Im

1,6,D87 >--- T407.

T407 >~ <
TEOREM 408

(VUEQ) (X, y€Ep-ldu(Mx) —» (X ™ y>€p.1du(viD)).

TEOREM 409

(VUEQ(xE€8. 1Idu(MID) Tt yeMl -» (X ™ y)€8.I1du(vl

Dokaz

@O vena ft XE8.lduWD & Yy€MR Sup.

@ urx 1,D88

G WYYy r x*y 2,1,7180m
@ ur x*y 3,T176m

1,4,D087 >---T409.



T409 >---<
TEOREM 410
(VUEOX(XEP*Idu(MID & ycMx *e (X
TEOREM 411

(VGES)(G Ccun
x€GC ft z&M

ft 46 =0 ft (X,y€G
& ™ z2)eG))

—-»

Dokaz

(1) X€MX

(@) @ncN) (x = Qna(x)

GAOngx) ™ Q~nba=gq(:*) a gq(x) ”~ Qnba=x

(@) (vxeM Y(BYEMR)(x Uy = x)) ft

(3zeM HY(Q()1 z = x)).

GOWXEMX))X r gx) ft gxX) r x).

®) u€Q & zcMg Tt U r z

(MGEEN)U w z =Q0nilu ™ a(@) )

® u”z=0Qnq@

OMVu€EQ(VzEMK)Y(U r z —»

(10) (SGES)(GC Mx ft 4G =0& (X,y€G
X N y)EG) ft (x€GC & ZEMX —» (X N 2)«G))

(1) xeG —» g(x)€0.

u” Zs2z).

(12) x,y€G

(13) (x ™ y)eG

A4) ax y)*c ft
ax *y) ry

(15) (X, yEE0)@EBUEQU r x & ury

(16) QueQ)(u«Fi ft G C s.ldu(vn)).

qgx *y) r x ft

(@A7) ucQ ft ueG Tt zss.ld™MD)
a8 urz

a9 unz=1z

(20) z€G

(21) (VUEQ@EG -» s.ldu(MID C G).

10,16,21 2>--T411.

97

" y)Ep.-.Idu(MR)).

x> y)€c) ft
SueQ)(G = s.1d (M.))).

Sup.-
. T79m
2,*151"*75.

1,2.3
4-T176m

Sup.
6,T79,,T137,
7,6,D41m ,T1811
6,7,8

Sup.
10,4

Sup.
12,10

13,11,5»T180m ,T1811
12,14,7T38m
15,10,D88

Sup.
17,D88

18.9
19.10

17,20
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T411 >— <

TEOREM 412

(VGES) ((GCM & 4G =0 & (X,y€G & "y)«G ft
xeG & zEM —» (X ™ 2)eG)) —»(Bu€Q)(G =p. 1d*MN)))-

D87,D88,(5) u dokazu T411 >—
TEOREM 413
(VUEQ)(s-ldu(vi) =U{X: weQ& u rw ft X =Modw(MR)}).

T413 >---<
TEOREM 414
NueQ)(p-lduvih) =U{X: weQ& u Fw ft X =Mod™M™M)}).

T413,T186m >—
TEOREM 415

= Modab (l«e-

T415 ~—-
TEOREM 416
p.1d~) = Mod™iM,).

T413,T415 N—-
TEOREM 417
(VueOHs.Id"NiM”™) C a.tau(Mt)).

T417 -——--
TEOREM 418

(VUEQ) (p- Idba(MID S P*1du (M7D)) =

D88, T186m >——
TEOREM 419
a.ldba”n)

W.

T419 >— <
TEOREM 420

P-l1dab(M>
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1.12. m-L O G I K A
1.12.1. m,-LOGIKA

DEFINICIJE 90-96
90 TO = ba.

91 10 = ab.

92 (VxeMID(—mx = KX).

93 (VX,yEMI)(X &m y & X OV

94 (VX,yEMW)(X vm y m XO 0

95 (VxfyeMx)(x y mBx<0y ,

% (VLY Ny = (KX «y) Ky « X))

DEFINICIJA 97
(V*EN+)(Lx = Modba(M>I) U Mod~TMA)) .

KONVENCIJA 2
(V*EN+)(XLKY) ——>UL”").

D80,D90-D97,T79m , T92, T95m , T102m , T104m , T124m ,T125m ,T137m , T138m,
T400 >---

TEOREMI 421-424
421 (7X61")@C) =Ta v a() _y/ _

422 (VX€ )(DXGLn & I x«L* &
423 (Vx,yELID(( x &m y>elL* & o ym YELID.

424 (VX YEIN)(( X My yel * & (X =<-h. YIELY).
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DEFINICIJA 98
(V*eN+)(JZ~ = (L*, D, i, -im, &m, vm, —*m, )).

1.12,2. 1Z0MORFIZAM ALGEBRE SUDOVA I m"™-LOGIKE PRVOG REDA

D3Im ,D90-D97,T8m> T1241H, T125m , T392,T396,T397,T421 >——-
TEOREMI 425-432
425 Li = {10, 10}

426  (VxEL1)((-nmx =TO X=10) &
(>mx =10 X =T0» =
427 (Vz~cLjHT &m y =TQ - X =170 & y -10)

428 (VX,yELD(X vm y =0 x_= X * K & V& -

429 (VGYELI>(x -»m y =20 - X =15 & y =10)
430 (Vx,yELD) (X y =TO <» X =y
431 (VxeLi)(~imx = Dx).

432 (VxELi>( Ix a X ).

D98,T425-T432, (V.Devldé, Matematicka logika,1964,str.37,Def.2.1.)

TEOREM 433

JZfcS algebra sudova*



1.12.3. SISTEM M KAO GENERALIZACIJA

D90,D91,D32 >-—-
TEOREM 434

llo=To * Uo*V

D92,T113,T82 >--
TEOREM 435
(VxEM) (- iflk = DIX).

D92,D31,T8 >-—-—
TEOREM 436
—+=L, =14 a

T,.

D92,T98 >-—-
TEOREM 437
(VxEM) (— i qnx * X).

TEOREM 438 X X)
(VxeM) (x ém X =Q 8 Xx)

Dokaz
(1) xeM

ZA’(x)
(2) x v x = sze(x)(qs(x) v qg(x))
(3) =Q q’(x)

a_(
(4) i W

1’ 4'D93 > St T438.

T438 5---<
TEOREM 439 x )
(VxeM)(x v x = Qp X)-

D931D94fT190,T178 >---
TEOREM 440
(Vx,yeM)(x &m (y vm X)

1
A
X

T440 -——--
TEOREM 441
Wx,yeM)(x Tm (y am x)

y) vm x).

x vm y) X) -

LOGIKE

Sup.
1,
2,

3,T225

101

T225»T137
T209,T211
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T145,D93,D90 >---
TEOREM 442

(VxeM) (x & To = X).

T442 >---<
TEOREM 443
(VxeM)(x vm 1Q

I
e

T438 >---
TEOREM 444 X X)
(VxeM)(x &m 1Q

I
O
(00]
[
O
o/

T444 >---<

TEOREM 445 X (9
WxeM(x villTg =Q p TO).

T154,D91,*D92 >--—-
TEOREM 446
(VxeM)(x &m (~imx) V —

T446 >---<
TEOREM 447
WxeM)(x vm (—mx) = V -

TEOREM 448
(Vx, yEM) (x Yy

* gx) =TQ A y * IxX).

Dokaz

@D x,yeM A x ™y = ba Sup.

@ ax *y) =ba 1»T37

@ a) =ay) = ba 2,T139,T124
4 (EFEm,rEN)X * Qmg(x) A vy =Qng(x)) I»T79

(B) Qm+nba = ba 4,3,1,T137

(®) Qm ba = Q"nba 5,T69

My = Ix 6,4,3,T109,T112

IX). 1,3,7
ba). T109,T112,T137

(3) (Wx,yeM)(x 'y =ba —» q(xX) =ba Ay
O (XYyeEM(@(X) =baAy =1IXxX-*x"y

8,9tD90,D93 >---T448.



T443 >---<
TEOREM 449
(Vx,yeM)(xvffiy =10

T448,T106 >--
TEOREM 450
(Wx,yeM)(x &nly =Tqg <=

+ 4

<> qe) =*Q

ac) =Tq 1t

T450 >---<
TEOREM 451

(rx,yeM)(x vm ly =1Q ft

1Q

«“—»

a()

TEOREM 452

(WX, yEM) (X -*my *1Q To &

0[€9)

Dokaz

@ x,yeM & Kx ~y = ab

(@) @m,nEN)(Kx =Q*m q(x) & y = Qna(y))
@) *m+tn(@() « aqy)) = ab
@) a(x) =ba & q(y) = ab
(B) Qnab = Qmab

(6) y = DQmba = Dx

() (vx,yeM)(Kx ~ y=ab —»
@ x,yeM Tt g(xX) =ba &
(© Kx "y =KDy « vy

QO Kx ny =y nly

y = Dx

103

=1x).

q(x)=ba Tt y«Dx)

(11) (vx,yeM@(x)=ba 1t y=Dx —» Kx y=ab)
7,11,D090,091,D95 >— T452.
T452 -——-<
TEOREM 453
(WX, yEM(-Ilx Amy =TO0 «-» qx) =1Q ft =
TEOREM 454
VX, yeM)( Dx wvmy =10 gx) =TQ ft
Dokaz
() x,yeM ft Dx * y = ab
X (DX)+X )
@Qp P ap(®) ™ ap(y) = ab

@ Ap () + Xp(y) =0 fegp (@) * ap(¥)
@ XAC) = -Ap(y) ft qfi) = ba ft ap(y)

& &

y = Dx).

Sup.
1,179,1102,1105
2,1,T137
3,T78,T125
4,3,T69
5,4,2,T95
1,4,6

Sup.

8, T83

9, D32
8,10,T451,D95

Dx) =
Sup.
1, T238,T138
2, T125,T222
3, T266,T264
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T456 >---cC

TEOREM 457

IGye) ((-mx Ap y) vy (K& =iy) =1 o
TEOREM 458

(Vx,yeM)(( Dx vmy) (x v,, Dy ) =T,

Dokaz
@O x,yeM A Ox*y) » X~ Dy) =ba
(2) q(Dbx">y)=ba A DX ny =I1(X " Dy)
@ ap®) " ap()=BA A ap() - qp(Dy)=BA

@ a = ady)

A (DA )
G QP p BA=Q p p  IBA

A COtA (NI -A_(X)-A_(y)-I
® Q ba= Q p ba

(M AsH OO+ = - (Aa(y)+Ap(V)+1)
@ A a -AY)
WX, yeEM((Dx y) ™ (x ™ Dy)=ba —» x=ly).

(10) x,yeM A x =ly

-A QA (Dy)

ADEOx  y) ~ X ADy)=(Dly ~ y) ~ (x ~ DIX)
a2 =Ky y) ~» X" KO
(@) =ba " ba

(14) (x,yeEM(x=ly —» Ox * y) N~ (X * Dy)=ba).

9,14,D090,D93,D94 >--- T458.

T458 >---<
TEOREM 459
(vx,yeM) ((Dx Am y) m x &m Dy) =1

T157,D93,D94 >---
TEOREM 460

(WX, yEM)(D(X Am y) = Dx vm Dy).

T460 >---<
TEOREM 461

(Vx,yeM)(D(x vm y)

Dx &m Dy).

105

a(x) =da(y)).
x = ly)

Sup.

1, T448

2, T238,T109

3, T125

4,2,T238,T112

5, T266
6, T222
7, T283
1, 4,8,T292,T109
Sup.
10
11, T118
12.T155
10,13»T124
S\
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1.13. IS T R U K T U R A

1.13.1. m-ZEROID KAO INDUKTIVNA KLASA GENERIRANA 1Z m-NULA
OPERACIJAMA  ZBRAJANJA

DEFINICIJA 99
= {X: xeMnepoz & (@) =ba v qgx) = ab)}.

DEFINICIJA 100

(W ,ab, ba, N
D99,T311 >---
TEOREM 462
xeMn AX) <0 & -iIl(X) =dX).-

T462,T147»T148 (tot.indukc.) >-—-
TEOREM 463

(VG6S)((0oCG & GCMA &
x,yeG —» XM y)eG & X ”™My)eG) —* G =M).

TEOREM 464
X, yeW)((@(x) =ba & qy) =ab) - »
X Ny =D ™ Dy) & x Ny =D "N y)).

Dokaz

D xX,yeME & g(xX) =ba & qy) = ab Sup.

(2) @Bm,neN)(x =Qmba & y = Qnab) 1,779

) D(x v, Dy) = DQm+nba 2,T137,T145
@ = Qm+nab 3, T95

o) = Qmba ™ Qnab 4,T137,T145
G (Vx,yeEM) (q(x)=ba & q(y)=ab -> x ” y=D(x ~ Dy). 1,2,5

() x,yeM» & x =Qmba & y = Qnab Sup.

() D(x »y) = DQm+n(ba N ab) 7,T137

(©)) = Qm*n(ab ™ ba) 8,T95,T157
(10) - Qmba ™ Qnab 9,T137

A1) vx,yeM) (g(X)=ba & q(y)=ab —» x » y=D(x ™ y)). 7,10
6,11 >--- T464.
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T464 >——<

TEOREM 465

VX, yeW) ((@(x) * ab e qy) = ba) x Ny =D(Xx " Dy) &
X Wy =D(x"Yy))

T464,T465 >——-
TEOREM 466

XL, yEM)(AgX) =qy) —» x 7~y =Dx ~Dy A
X «y =Dx Dy

TEOREM 467
vx,yeWMH@x) =qy) =ba —» "™y =Q0*(X ™ y))-

Dokaz

@D x,yeM A x *Qmba A y * Qnba Sup.

(@ X «y =Qn+n-1 ba 1,T138,T125
©) = Q,(Qmba w Qnba) 2,T137iT145

1,178,3 5--T467.

T467 -——--
TEOREM 468

O yeM)@) =aqy) *ab = X7Ny) *F (XM Y)).

T464,T467 >---
TEOREM 469

(VXEMN) (q(X) Dx A X ba « Q*x).

ba —» x ™ ab

T469 > <
TEOREM 470

(YXEM) (q(X) ab —»x”"~ba=Dx A x ab =
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1.17.2. 1ZOMOKFIZAM EF-STRUKTURE 1 STRUKTURE DOBIVENE
DUALIZIRANJEM ADITIVNE POLUGHUPE PRIRODNIH BROJEVA

DEFINICIJA 101
@ C=X & =Y =~%X = {0,1,2,7,...} & (X,0,Y)«Speano e.

tu) #=x & xax={oi,(X,0,7?)«s Fap &

DEFINICIJA 102
(NA,010121A1+1 +) (Nf " £ u d & Z: u

ASFNC?V  * a0 =5 & a0 0 & (XENIYAX ZA)

+€Sfunkc”5 X W « +€"funl'§\CJ(fo NFeV
(VXEN})( X +0 =X & X +0 =X )
VYN ) X +Zy = X(x +y) & xTZy =K X2vy) )
(vx,yeNj - )( X+y =y + X & XQy=y¢X )
OGY,ZeNJ. Y(X +(Y + 2)=(X + Y)+ Z & X +(y + D=(X + y)+ z )
( O¢0 =20 & 0+ 0 =10 )).
PRIMJERI
267 7+0=7 . 269 3+0=5. 271 0 + 0 = 1I.
268 5+0=5. 270 5 + 0 = 5. 272 0+0=1.
D101,D102 >— T471 - T478.
TEOREM 471
(VXENF)(X6E  *—» AXEN ).
PRIMJERI
273 Al =AZO ZAO mZ0 * 1. 275 A35 = 55,
274 Al =AZO0 ZAO =70 = 1. 276 A75 = 73.
TEOREM 472

(YXENT ) (AAX = X).

PRIMJERI
277 AAO = A0 = 0. 278 AA&9 = 69.

R R P ™ R xR
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TEOREM 473
x,ye€ Y(x +y =ACAX +Ay)).

PRIMJER 279
1 + 2 =1110 = EEEA(O + 0) = A( EO + EEQ) = A(F + 5).

TEOREM 474
(Vx,ye™ J(x + Ay = A(X + ¥)).

PRIMJERI
280 2+ 5 =EE(0 +0) =EEO = 2 =A2 = A(2+0).

281 2+ 3=2+ A3= A2 + 3) =5« 282 3 +2 =2+ 4 = 5.
TEOREM 475

(Vx,y6£ Y( AXx + Ay =EA(X + y)).

PRIMJERI
283 0+ 2 =71(5 +0) =1120 = 3 =ZA(0 +2).

284 3+ 5 =ZA(3 + 2) =ZA5 = Z5 = 6.

TEOREM 476
(Vx,ye£ )X +y = Z(X + y)).

PRIMJERI
285 0 + 2 =22(0 + 0) =22Z0 = 3 = 1(0 + 2).
286 3 +2 =2(3 +2) = 6.

TEOREM 477

(Vx,yef )(X + Ay = x + y).

PRIMJERI
287 2+ 1 =22 +0) =12=3=2 + 1.

288 3+2=2+3=2+3=5.
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TEOREM 478
VX, yED)(AX + Ay = A(X + Y)).-

PRIMJERI
280 2+ T =12 +0) =E2 =3 =A(2 + 1.
200 3 + 4 =A@ + 4) =A7 =1T.

T473»T478 >—--
TEOREM 479
(WXLYENN)Y(A(X + YY) =AX + Ay & A(X +y) =Ax +Ay).

T474,T476 >—-
TEOREM 480
(WE<DX + 0= Ax & x + 0 =1x).

T480,T479 >---
TEOREM 481

(WE<D(X + 0 =Ax & X + 0 =2Zx).

TA74,TAT7 >---
TEOREM 482
(xEND(x +1=Ex & X + 1 =1IX).

T462-T482,D101,D102,T72,T137,T138,T84,T157,T158
TEOREM 483

~NEr~ (VN 0, O, I *A» » ¥+ ) —

(FF,FeSvi jekc (N MA))(Fo) — P2 & F(O) =ab
O, yeND)(F(X +y) =FX) " FY) & FX +y) =FX)

MIXENN)(F(Ix) = QF(X) & F(AX) = DF(X))).-

FCY))

&

A



Drugi dio

mt-STRUKTURA

21. UTEMELJENJE Mm-S TRUKTURE

DEFINICIJA 103
({AiB}eS A k{AB} =2 - *=

*t{A,B} = {<G,f8>fp): G,S & (f8,fp)E Sfunkc(G x G,0)

(YHES)(({A, Bl ch a hcg a

(x,yeH (Fs(X,y)€H A fp(X,y)€H)) — » H =06)

(X, y€6 — (fsx,y) = FQy, ) A Tp(xy) = fp(y,x))

(.y.266 _w (FS(ASQO0Y)D = &
fp(fp(x»y)»2) = fp(x,Tp(yY,2))))

(XE{A,B} _ fs(x,x) =x A fp(X,x) = x)

(xeG — fs(x,fp(B.,A)) = fp(x,f8(A.B)))

x,y€c A f8(x,fp(B,A)) =fp(y.fe(A,B))) - * x =Yy)

<G - * -8, fpB.AI(A, B, fs(A,B), Tp(B.AD}-

AKSIOM 3
K(*t{A,B}) = 1.

DEFINICIJA 104
Mt=G A v,=fQ A ~ =TFp) (G,f8,fp)6 *t{A,B}.

111
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DEFINICIJA 105
@~ {AB}

DEFINICIJA 106
= {A, B, A~B, B~ A}

D103-D106,A3 >-—-- T484-T494.

TEOREMI 484-485.

48B4 _ sgfunkc(it X M) My,
X Mt), Mt

485w eStunkc((Mt J*

TEOREMI 486-494.

486 -1A = B.

487 ot Mt

488 (VGES)((FitC GiCMt & (Xx:.yeG x ™ y)eG &
XN yYy€e) ——-» G =Mt)>

489 (VX,yEMB)(X Ny =y 27X & X7 oy rx.

490 (VX,y,zeM)(xW (Y " ) = X y) ~z &

Xy~ =K y~r2

491 u~u=u & uPu=u.

492  (VxeMt)(x ~ B ~ A) = X N (A B)).

493 (YX,yeEMt) (X B"A =y* A"B —->» X=y)-

494 (VXEME) —i((x ~ (B ~ A))eQ*)

DEFINICIJA 107

= (Mt, Qt, ™~ , N ).



113

TEOREM 495

Dokaz
T309,T280,T18

W Adllyy, A Bahy,
T309,7281,7282,7237,T238

(@ x.yeMpgz &2 WM o, * &N ¥gMg,
T278,T309

3) (Y>b%\4)(3neN+)(x =PnA v y =PI).
(4 Ces A (GtC 0C , )A (X,y€0  (XVy)cE A

x ™ YIEO). Def.
B) xg6 —» ANXxX)gG & B ™ x)96 4
(®) xgG -> PxgG 5»T133»T134
(7)) Mpoz~e© 6,3,4
4,7 >——-
@ (V6gS)((GLC GCMpoz) & (X,ygG <=(x y)dG
- ey >
114,72 2—-
® n A =B.

T18,T124,T125 5-—-
AWM)W ~u =u A u”™u =u).

(1D X6Mp519, A (& ™ BA)g{A,B,BA, ADI Sup.

(12) 3x gi%z)(x:Q *A v x=0*B y x=Q*BA v X=0Q»AB) 11, T152,T69
A3 AX) =-1 v XX =0 12,7288

(1% X«Mpoz —+o 4 ((xw (B « A))iI{A,B,A ~B,B « A}) 11,13,T309

p103,1,2,8,9,10,14,T141-T144,T152,T153,T72 >— T495.

22. OPERATOR Qn

DEFINICIJA 108
(VXEME)(QX * X v; (B A A)).

D108,T492 >-—-
TEOREM 496
(VxeMt)(@Qx = x * (A ™ B)).
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D108,T490 >—
TEOREM 497
(Vx,yeMt)(x ™ Qy = QX ™ y)).

1496,T490 >—
TEOREM 498

(vx,yeMt)(x * Qy = Q(X ™ y))-
T490,T491,D106,D108 >—

TEOREM 499
uwefir® —» (U w) V. Uvw=Qu V u”™w*Q.
T499 -— -
TEOREM 500
uweFi® —» (U AwWe® v u”w=Qu v u”w=Qw).
TEOREM 501
QeSbiJekc(Mt>
Dokaz

Q<Srunkc<Mt> Ty QP- D108,D106,T484 ,T494
EZ)) X yeMt))(Qx =Qy  —» X = y). D108, T492,T493
B G =4 xeot v (M. & x =Q} Sup.
(4)0tCoO 3,D0105,D106
O x,yeG > XNMNy)EGC ft X ™ y)eG 3,T497-T500
® G =Mt 3»4,5»T488
(M Mt = U Adom(Q) 6,3
@ ME\Q™ = Adom(Q) 7,1
1,2,8 >—TH01.
501 >—
TEOREM 502

(EME)GTIFESFunke (N+ MO (Fx(©) = X 1t
OmeNH) (FEx(tl) = B()).-

DEFINICIJA 109
VEMD) (VENH) (N = Fx(N))  <-+  (Fx jJe Jedinstveno odredena

funkcija iz teorema 502)).
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D109,T502 >—
TEOREM 503
(WxeMt)(Q°x = X & Qlx = Qx)=

D109,T501-T503 (tot.ind.) >---T504-T506.
TECREM 504
(VN6N+)(Qn€Sinjekc (Mt ,Mt)).

TEOREM 505
(Vx, yeM?) (VneN"1) (x ~ Qny = Qn(x *y) & x ~Quy =Qn(X ~ y))e

TEOREM 506
(VXEMt )(VmM,n€N+)(Qnmdnx = Qm+nx).

TEOREM 507
(Vu€Qp(VneN ) -i(Qnu6bQ¥*).

Dokaz
D ueQt & (n€ENpoz)(QNu6B0p Sup.

@ QQn*“1ueQ™ 1,T506,T503
1,2, T501 > T507.

TEOREM 508
(VxeM t) (5TT uefi”™) (M neN+) (x = Qnu).

Dokaz
(1) G = {x: xeMft & (3uefi™) (65TneN+) (x = Qnu)} Def.
(2) A=A & QB =8B T503
(3) GtC G 1,2,D105
(4) (3x,yeG) (5TuWEfilf) (3m,neN+) (x=Qmu & y=Qr) Sup.
(5) x vy =Qmtn(u *w) & x N~y = Qntn(u W) 4,T505,T506
5,T499,T500,T506 >-----
(6) (ffz, ((xvy=Qmtnz v XNy =Qm+n+Nz)
(x ~ y=Qmtnz v XNy =Qn+n+lz))

(7) x,yeG — (xX*y)eG & (x ~y)eG 1,4,6

(8) (YxeMt) (3ueQ”) (3neN+) (x = Qnu). 1,3,7,7T488
(9) (GXEMLt ) (Mu,weQM)(5TmM,NEN+) (X = Qmu & X = Sup.-
(AO@k<=N+Y)(m =n +k V m+k =n) 9

(1) Qn+k u = Qn w V. Qm u = Qm+k 9,10

(12) Qk u = w vV oom@¥ . 11,7504
a3) k 0 & U -—-W 9,10,12,T507

8,9,10,13 >— -T508.
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D115,T514,D113,D114,D105
TEOREM 515

*t€Ssurjeke

0116,T513,D0111,D112,D105 >
TEOREM 516

dt6Ssurjekc(Mt,V *
D113-D115,T511 >-—-

TEOREM 517

(VXEMA((ING)  =A < » A~ X =x
QIO B A x =x

D116,D111,D112,T512 >-—-

TEOREM 518

(VXEWD) ((dEG)  =A *~» X A

(dt®) B «—» XNB =X

T517,T518,T491 >-——
TEOREM 519
It(®) = A & dt(d) * A.

T519 >——-
TEOREM 520
It =B A dt(B) = B.

T517,T518,T490,T491 >-—-
TEOREM 521

»It(A~B) =A & dt(Av B) = B.
T521 5--c
TEOREM 522
It(B«A) =B & dt(B « a) = A.

TEOREM 523
(VM) (VneN+)(1E@QnX) = 1E(X)).-

Dokaz

() xeMt A neN+ A 1t(Onx) = A

@ A ™ Qnx = Qnx
@ n(A  X) =Qnx

B N X

AN X =

X "NB

X NA =

I
o

Sup«
1»T517
2,T505
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(4) AN X =X 3,T504
(B) (VxeEME) (VnEN+)(It(Qnx) = A » 1t = A). 1,4,T517
5 >—cC

6) (VXEME)(VnEN"H)(1t(Qnx) =B It(x)"=B).

5,6,T515 >---T523.

T513,T505,T504,T516 >—
TEOREM 524
(eW.) (VneN™) (@ .(nx) = dt()).

DEFINICIJA 117

(VXEMBD)MERI)(1tX) =u “u = 1tX)).
DEFINICIJA 118

(VxeEMt)wuer2t)(dt(x) = u * 4du =dt(X).-
PRIMJERI

208 1t(A) =B. 299 dt(®) =A. 300 It(B ~ A = B.
301 dt(A ~ B) = A.

24. OPERATORI P~ 1 PJ

DEFINICIJA 119

(WxEME)(P1(X) =Px =y atx =A & y=p X
at®x =B & y =A™ X))

DEFINICIJA 120

(WVxeMt)(Pd(X) = xP =y dat®x) =A & y =x"B)
@daet®x =B & y =x* A))

PRIMJERI
302 PA =B' a. 303 PB =A ~B. 304 P(B "™ A =A"B ™ A).

305 AP =Awv.B. 306 BP =B ~A. 307 (A~B)P =(A" B) A A
308 P((B "A) ~ (B~ A=A ~B~"A ~ B~ A.
309 B ~B " AP = (B DB A
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TEOREM 525

(WXEMBD)E(PX) = TtX) & dt(PxX) = dt(X))«

Dokaz

(D xeMt & 1t(X) = A & dt(xX) = A Sup.

@ A"X =X & X"A =X & Px=B~™x 1, T517,D119

B3 B"M"Px =Px & Px ™A =Px 2, T490,T491

@ 1.(Px) =8B & d.(Px) =A 1,T517,T518

1,4,)117 >

B) (WxEMD)ItX) = A & dtX) =A 1t (PX) = 1txX) &
dt(Px) = dt(X)).

5 >«

®) (yxeMt)(It(xX) =B & dt(xX) =B 1t (Px) =1txX) &
dt(Px) = dt(X)).

T517,T5ia,D119,T490,T491,D117 >--—--

(7)) (WxeMt)t(X) = A & dt(X) =8B It(Px) = 1t(X) &
dt(Px) = dt(X)).

7 >—-cC

@) (Vxemt)(It(X) =B & dt(xX) = A ItPx) = 1t(X) &
dt(Px) - dt(X)).

5,6,7,8,T515,T516,D105 >---T525.

D120,D118,D105,T490,T491,T515-T518 >--

TEOREM 526

Vxgvt))(IMxP) = IXX) & d™MXP) = dt(xX))»

TEOREM 527

PleSbi JekcMt” MEXQ t#

Dokaz

D119,T484,T485 >--

(1) PI6Sfunkc(Mt’V *

(@ xeMt & Px =A Sup.

@ It =B & dt(x) = A 2,T525,D117

@ ANx =A 3.2, D119

(5) (HneN+)(A ~ Qn(B ~ A) = A) 4.3.2, T508,T522

@G)QnhAN BNMA =A 5, T505

(M (vxeMt) (Px = A). 6, T494,2

@) (yxeMt) -i (Px = B).
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(@ AdomCP™) C (Mt\Qt). 1,7,8,D105
D105 ,T508 >-—-
(10) yeEMt\Qt -— »

("m6Npoz)(y =QmA Vv y =0%) \%

GTneN+)(y = Qn(B "A) v y =0n(A ~ B)).

A1) y = AwQm~1(B "A) v
y =B ~ Qm™L(A ~ B) v
y =B”QnA v y =A~"QnB 10,D108,T505,T506,T496
(12) y = PQm-1(B ~» A) v
y = PQE’1(A~B) v
y = PQnA v y = PQnB 11,T519-T524,D119
(13) yeM™\ - * (GxeMt)(y = Px). 10,12,T504
(14) Adom(P1l) = Mt\ fit. 9,13
(15) x,yeMt & Px =Py Sup.
e 1t = It@y) & dt(x) = 15,T515,T516,T525
(17) (5Tu€Qp(3m,nEN+)(PQmu = PQnu) 15,16,T519-T522,T508
a8 Qm(A ~uw) =Qon(A~u Vv
Qm@B * ) =0n(@B ~ w 17,D119,T505
A9 m =n 18,T504,T507
QO (Vx,yeMt)(Px = Py —“* x =1vy) 15,17,19

1,14,20 >--—- T527.

T484,T7T485,T494,7T496,T504-T508,T515-T525,0105,0117,0119 >-—-
TEOREM 528
PdeSbijekc(Mt> MtX 0 t)#

TEOREM 529
(VxeMt)(PPx = Qx).

Dokaz

@A Xwe & INX) -A & dtx) = A Sup.

(2) (ffneN+)(x = QnA) 1,7519,T508

@) PPx =Qn(A ~ (B ™ A)) 2,T523,D119,T505
(4) PPx = QnQA 3,D108

(5) (VXEME) ((1E(X)=A & dt(x)=A)  PPx=Qx).1,2,4,T506
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5 >~ <

(6) (VxeMt) ((It(x)=B & dt(x)=B) -* PPx =QXx).

(7) 1 xeMn & lj.(x) = A & d~x) = Sup.

(8) (3n«N+)(x = On(A ™ B)) 7, T521,T508

(9) FPx = On(A ~ (B ~ (A v, B))) 8, T523,D119,T505
(10) PPx = QnQ(A " B) 9,T496,T505

(11) (VxeMt) ((1t(x)=A & dt(x)=B) ->PPx=Qx). 7.3,10,T506
H >---<
(12) (VXEM) ((1t(x) =B & dt(x) = A PPx = Qx).

5t6,11»12,T515.D105 >--—--T5209.

T519,T508,T524,D0120,T505,D1081T506,T521,T522,T496(analog T529)>
TEOREM 530
(VXEME) (XPP = Qx).

PRIMJERI
310 PPA = A~ (B~ A = 0A.

311 PP(A B) =Av (BMA~AB)) =A"QB =Q(A ~ B).
312 B/AAPP = ((B~AA "B) "A=B"A=QB A).

DEFINICIJA 121
(VXEME) (VNEN*) (P2nx = Qnx & P2n+1x = PQnXx).

DEFINICIJA 122
(VxeMt) (VneN+)(xP2n = xQn & xP2n+l

Qnx)P).

D121,D122,T503 >  T531-T533.
TEOREM 531
(WxOM L) (P°x = xP° = X).

TEOREM 532

(VXEME)(P1x = Px & X?1 = xP).

TEOREM 533
(VXEME) (VNBN+)(Pn+1x = PPnx & xPn+l = xPnP).

D121,D122,T504,T527,T528 5--- T534-T536.

TEOREM 534
(Vn6N+) (P~Sinjekc(Mt ,Mt)).
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(Yn€EN+) (PrS1nJdekc (Mt ,Mt)).

TEOREM 536
(VXEME) (Vm,n€EN+)(PmPnx = Pm*nx &

TEOREM 537
(YxeMt) (Ym,neN+)(Pm(xPn) = (Pmx)P

Dokaz

@D xemt & 1t =A & dt(X) = A

(@ P(xP) =B ~ (x ~ B)
G)E:neN H(P(XP)

n).

B " (QnA ™ B))

@ =Qn(@B « (A v, B))
o =Qn(@®B ~ (B * A)
®) =B w <D "X

a = (PX)P

@GYWxeMt)((It(X) = A & dt(X)
P(xP) = (PxX)P).

OOWxeMH. (X)) =B & d.(X)
P(xP) = (PxX)P).

(10) xeMt & I1t(X) = A & dt(xX) =8B

(11) P(xP) =B " (X~ A)

a2 p(xP) = (B X) « A

A3 (VxeM)((ItC) m A & dE()
P(xP) = (PX)P).

13 >--<

A4 xeMt)((It(x) =B & d*"X)
P(xP) = (PX)P).

8,9,13,14,T515,T516,D105 >--—---

(15) (VXEME)(P(xP) = (PX)P).

15,D121,D122 >-- T537.

TEOREM 538
(VxeMtMSTIneN) (x = Pndt(X) & X

Dokaz

T508,D0106 >

(D YXEMN)(SImeN*)(x = QmA Vv X
X =Qm(AVWB) v x=0Qm(@B "

:A)

B)

123

* xPm+n).

Sup*

1,0119,D120,T525,T526

2,1»T519»T508

3,T505

4,T492

3,5,T505

1,6,0119,0120,T525,T526
->

1,7

Sup*
10,D0119,D120,T525,T526
11,7490

= B) ->
10,12,7525,T526

= A) -

= 1t(X)Pn).

= 0% \%

A)
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D112-D116,T487,T491,T517,T518,T525-T528,T538, T531-T533 >
TEOREMI 543-545
543 (s.1dB(Mt), B, i

544 (s.1dA(Mt), A, Pd)eSpean0 s#.

545 (p-1dB(Mt), D, Pd)6Speano 8..

25. NADOVEZIVANJE mt“P O L 1 OMA

DEFINICIJA 125 X. ()

(vx,yeMt))(Fk(X,y) ~ xy = z » (At = 1t(y) & z = PX ( )y)l \Y;

. OO+

dex = 1t(y) & z =P x y)).-

TEOREM 546

(VXEME)(AX =AM X & Bx=B”"™x).

Dokaz

(1) xeMt Sup.

@ 1t =A v It =8B 1, T515,D105

@B Ax =P°x v Ax = Px 2, D125,T540

(4) (VxXEMt)(AX = A ™ X). 1,2,3,7T517,D119

(5) (VxeMt)(Bx =B ™ X).
4,5 >— T546.

TEOREM 547
(WXEME)(XA =x " A & xB =x ™ B).
Dokaz
(1) Xem Sup.

* X+ X.(x)+1
@ xA =Pt A v xXA=PX A 1, D125

X. X.()+1

@ xA =(P X A NA xA = (P A NA 2, T525,T519,T518
AWXEN) (XA = x  A). 1,2,3,D125
4 >---<

B (VxeMt)(xB = x ™ B).
4,5 >— T547.
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y))e

TEOREM 548
Wx,yeMt) ((PX)y = P(Xy))-
Dokaz
D125,D117,D123,T556 >---
Xt )+1 X. (X)+2
(D vx, yeMt)((PX)y = P X Y v Py =P X y)-
1,T556 >--- X+(x) X. 0O+
Q) rx,yeMe)((PX)y =P(P t y) v Py =P(P x
1,2,D125,D117 >---T548.
D125,D125,T548,T555 >---
TEOREM 549
(Vx,yeMt) (VNEN+) ((Pnx)y = Pn(xy)).
TEOREM 550
VX, YEME) (VNEN+) (X(yPn)( = (Xy)Pn).
Dokaz
(O xfyeM. & ngN
n X.() n X.()+1
@ x(yPn) =P 1 (yPn) v xPn) =P x (yPn)
X+(X) X.(X)+1

R x(yPn) =(P * y)Pn v x(yPn) =(P 1 y)P"
1,3,D125 5-—-T550.

T546,T491 >---
TEOREM 551
M =A & BB =B e

T546 >——
TEOREM 552
AB =A"NB & BA =B ™ A

1552,D0119,D0120,T519,T520 5--—-

TEOREM 555
AB =PB = AP & BA =PA =BP.

T515,D105,T546,T517 >-—-
TEOREM 554

(et (t()X = X).

Sup.
1,D125

2.T537
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TEOREM 555

(VXEMD)IMN. )X = PX).

Dokaz

) Xemt Sup.
@ 1t =A V 1t(x) = 1,T515
Q) 1"()x = Bx vV IMOx = 2,D117
(*) T.(X)x =B x V 1IMn.OX =A™ X 3,T546

1,2,4 ,D119 >--- T555.

TEOREM 556
(VxeMt)(xd*(xX) = X).
Dokaz
(D) xeM. Sup.

t X.(X)
@ xd.(x) = (P d.(x))d & 1, T539

z X X z z
O « P t (d.(x)dt(x)) 2, T548

Xtx) 1 1
Q) =P 4 dt(9) 3, T516,T551
1,4,T579 >—— T556.
17516,D0118,T547,D120 >---
TEOREM 557
(VxeMt)(xd*(x) = xP).
TEOREM 558
_ _oMy)

(vx,yeM )(@.C) = L.(y) & Xxy =xP ) Vv

4 4 4 X+(y)+1

dae®x =1t(y) & xy =xP z ).
Dokaz
@O x,yeM. Sup.
Xt(y)
@) @, =1+ & xy = x(d.()P D)
+
@acx = 1It(y) & xy = x(@t(x)P Xx(y))) . 1,T515,T7516,T539

1,2,7T550,T556,T557,T533 >---T558.

D125,T558,T525,T526,D0121,D122,T523,T7524 >-—-
TEOREM 559
(xGyeMt) (tGy) = 1t & dt(xy) = dt(y)).-
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TEOREM 560
(Vx,y,zeMt)((xXy)z = x(y2)).-

Dokaz
@ x,y,zeM
A. X
@) y)z = (¢ dt(X)y)z
AL
3 ky)z="P y atyy)z
oz = P (It()y)z
A.(X)
@) xy)z = P  yz
A.()+I
xy)z =P yz

1,2,4,D0125 >--T560.

TEOREM 561
(VXEMD) () = 1E()AE()).

Dokaz

T519-T522,T551,T552 >-—-

(1) (Vu€Qp(u = 1t(u)dt(uw)).

(@) xeMt
G 1t =1tQQ t  g™"(x)) &
Xt(x)
de() =dt(Q qt() R
@ 1t =

2,4,7T509,D0106,1,T559 >--T561.

Sup.

1»T539

2,T515,T516,D117,T549

371554 ,T555,T536

Sup.

2,T510

It () & dt(x) = dt(@*(x)) 3.T525.7524
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2.b. DUALNOST mt-P O L INOMA

DEFINICIJA 126
A+(X)
(WxeMt)(Dx = P x dt(X))-

D126,T539,D118,D105 ~
TEOREM 562

DESbi jekc (Mt , Mt

D126,T540,T519,T7520,D118 >---
TEOREM 563
DA =B & DB = A

D126,T541,T521,T522,D118 >---
TEOREM 564
D(A~B) =B" A A DB ~A =A"B.

D126 ,T562-T564,T510,T509 >---
TEOREM 565
(WX, YEME)(D(X *y) =Dx ~ Dy & D(x ~y) =Dx ™ Dy).

2.7. KANONSKE FORME mt-P OLINOMA

DEFINICIJA 030

Ako je x m™-polinom, onda kanonska forma od x je y, ako 1 samo
ako jJe y = x 1 za svaki m™-polinom z, ako je z =y, onda broj
simbola za operacije zbrajanja koje dolaze u x nije ve¢i od b-
roja simbola za operacije zbrajanja koje dolaze u z.

TEOREM 08

Ako je x m™-polinom, onda kanonska forma od x je y, ako 1 samo
ako jJe y = x 1 broj simbola za operacije zbrajanja koje dolaze
uy jednak je t-duljini od X, tj. jednak je X (X).
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PRIMJERI 313-317
Kanonske forme m”™-polinoma iz ideala s.1d™M"), kojima t-duljina
nije vec¢a od Cetiri

X skup kanonskih formi od Xx

0 {A}.
314 AB 1 {Aw B}.
315 ABA 2 {AB~ A, (A B A}
3 {((A~B) A~B, A~B~™A-B,

(AN B™A NB), A™NB A" B))}-
317 ABABA 4 {(((A~BYA—"B” A, (ATBWA ~B " A) .
ArTB AHMB  a), ANB =G BNA
A~-~B"A-"B A, ANMNB A~™EB ™A,
(AWB*A "B A , (A B A B> A ,

A™-BNAMNBNMNA, ANB ANBI)IN AL

313 A

316 ABAB

PRIMJER 318
xe{A ~A, BB, B"AB, B~ ((A"™B)A ~B)} - * xnije
kanonska forma m™-polinoma.

DEFINICIJA 031

Ako je x m™-polinom, onda Fs-forma od x jey, ako 1 samo ako y
je primitivni m™-polinom 1li y je kanonska forma serijskog zbro-
ja primitivnih m™-polinoma.

PRIMJER 319
Fs—forme mt—polinoma kojima t-duljina nije veca od Cetiri su:

{AB), {a "BB~A, {a~@B~A, B~A ~B},
A" B A "B, B~A ~ B" AN}
A" B A @GAA, B A~ B"AA B}

D031,T510,D108 >---

TEOREM 09

Ako jJe x m.-polinom, onda se x dade na jedinstven nacin prikaza-
ti u FS—formi, odnosno u formi serijskgg zbroja iz g+x() 1 n-
pribrognika (B ~ A), pri Cemu je n = M. (X).
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DEFINICIJA 032

Ako je x m™-polinom, onda F*-forma od x jJje y, ako 1 samo ako y
je primitivni m™-polinom i1li y je kanonska forma paralelnog zbro-
ja primitivnih m™-polinoma.

PRIMJER 320
Fp-forme m™-polinoma kojima t-duljina nije vec¢a od Cetiri su:

{8,A}, {87 A A"B}, {B" (A"B), (A"D) "A},
BrNA~B) ~AAR"NB N ANBL,
{B" (A" B) (A" B), (A"~B) ~ (A" BN A}.

D032,T510,T496 >---

TEOREM 010

Ako je x m™-polinom, onda se x dade na jedinstven naCin prikaza-
t1 u FP—formi, odnosno u formi paralelnog zbroja iz qgXx(xX) 1 n-
pribrojnika (A ™ B), pri ¢emu je n = X X).

DEFINICIJA 033
Cr-forma m™-polinoma je svaki generator i1li  svaki izraz

P(e.«(P(P(Pu) ) )-..), u kojem je svako "P" supstituirano
n 321 123 n

odgovarajucom operacijom zbrajanja saglasno definiciji 119
i u=A 1li u =B.

PRIMJER 321
Cr-forme m™-polinoma kojima t-duljina nije veCa od Cetiri su:

{A.bJ, B"A A~BY, {AMB®"A, B™ A" BI,
B8 A" @B A, A B" (A" B)I,
ArTEBA-BMA), B AN BN ANBD},

D033,7T539,D119 >---

TEOREM 011

Ako je x m™-polinom, onda se x dade na jedinstven nacCin prikaza-
ti u C-j-formi, odnosno u formi i1z DO33 i1 to tako da je u = d~.(X)
i1 broj simbola ”P" jJednak je t-duljini od x, tj. X.(X).
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DEFINICIJA 034
Cr-forma m”™-polinoma je svaki generator ili svaki 1i1zraz

C wP) P) P)...)P, u kojem je svako MP" supstituirano
n 321123 n

odgovarajucom operacijom zbrajanja saglasno definiciji 120 i
u=A 1l u =B.

PRIMJER 322
Cd-forme m™-polinoma kojima t-duljina nije veca od cCetiri su:

{A,B}, {A~B, Bra}, {(AVvB «A B« A "b},
{(A~B *A 7B, (B"A" B A},
{(((A~"B) rrA) vB) "A ((B"™A "B ~A " B}.

D032,T539,D110 >-—-

TEOREM 012

Ako je x m™-polinom, onda se x dade na jedinstven nacin prikaza-
ti u C*-formi, odnosno u formi i1z DO341 to takoda je u = 17°(c)
i broj simbola "P" jednak jet-duljini od x, tj.A"(X).-



Treci dio
ALGEBRA DVOGENERATORSKIH
IM1ITANCI JA

3.1. UTEMELJENJE t-STRUKTURE

DEFINICIJA 127
(Ve,feRe)(e < f —» 3e)i~ = {x: keR%’E),Z, & seE &

x = (As)(kse) V X = (AFDKsY))D).

PRIMJERI
323 {(as)(2.3s~3), (as)(*s2), (as)(0.5s“3)} C g _5
324 {(As) (M» (As)(D), (@s)P), (@s)(0.1s™)} C Q

DEFINICIJA 128
seE — > (AsUFp + (As)(F2) = (Ra)(F* + F2).

DEFINICIJA 129

seE — W (as)(F1) + @s)(F2) = (as)( ).
N F2

PRIMJERI

325  (As)( )+ (As)(B) =(s)( \t-4S ).

326 (As)(5--"- ) ? @s)®) =(@As) 3} -).

AKSI1O0OM 4

(ve,feRe)(e < f -» (FF1GeS)(0O, C G &

(x,yeG = xX+y)eG & X +y)eG) &

(\ANeS)((C>e‘>ZC W & We G &
1

x,yeW -“= x+y)eW & & +y)ew)) —» W =06)
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DEFINICIJA 130
(Ve,feRe)(e < T —» (Te « je jedinstveno odreden skup G iz
aksioma 4).

DEFINICIJA 131
T=4{ e, feRe & e < f & XeT6f)?NS%jx* }0

KONVENCIJA 3
(Ve,feRe)(e < D (Ye>F)(2)) D (Ye)©@).-

KONVENCIJA 4
(VXeTeF)(X = (As) (F) X = F).

D130,A4,D127-D129,K3,K4 5——
TEOREMI 566-571

566 (@efCT ef.
567 x,yeTef -> ((x + y)€Tef & (X + y)€Tef),

568 MWWeS)((fiefFC W & W C Tgf &
x,yeW —» (X +y)eW & X +y)eW)) —» W * Te;b).

X
569 (Vx,yeTeP)(x +y = 2 ).

570 (vx,yeTef)(x +y =y + X).

571 (Vx,y,z€TeP)) (X + (y + 2) = X +y) + 2).

DEFINICIJA 132
(Ve,f€Re)(e <f -» f = (T > Qe>fF, +, + ))_

DEFINICIJE 133-134
133 (Ve,r€Re)(e < Ff Ae>T = {X: k€Repoz & seH & x=*(As)(kse)})

134 (Ve,f€Re)(e < T m-» Be>F = {X: k€RepQZ & seH A x=(As)(ksft)P

PRIMJERI
327 (f€Re & 2 < f & seH ) - »

{(As)(3s2), (Aa)(n82), (as)(@-s2)} £ A2>T.
328 (eeRe & e < -1 & seH ) “=m

{(as)(@2s*“1l), (asHus"1l), (as)( s 4)) £ Be>-1.



135

TEOREM 572
(Vx,yEAeP))((X + y)*Aef & (X + y"6Aef™*
Dokaz
(D e,freRe A e < f & Xx,y«Ae N Sup.
(2) (3kl,k2€Repoz)(x=(As)(klse) & y=(As)(k2se)) 1,D133
k k
B x+ty = (klt+k2)se & x+y = ae 2,D128,K4,T569

1,2,3»D133 ,K3 >---T572.

T572 >---cC
TEOREM 573
(Vx,y€Bef)((x + y)€Bef & (X + y)eBefT).

D133,D134,D127 >
TEOREM 574

Aef U BefF :Qef

TEOREM 575

Aef n Bef * O#

Dokaz

(D e, T€ERe A e < T & x€Aef & xe®ef Sup.

(2) (3k1l,k2€Repoz)(x = k™6 A x * k2sf) 1,D133,D134,K4
) kMa® « k2sf 2

4 kx =k2>* a="°f 3

1,4 >--T575.2

DEFINICIJA 135
(BA)ef = {z: xeAef A vyeBef A z =x + y}.

DEFINICIJA 136
(AB)ef * {& xeAef A yeBef A z =x + y}.

TEOREM 576
xa(BA)ef (akl,k21Repoz )(x = 8f kl )
k, & af-e)
(1) xe(BA)ef. Sup.

(2) (@kl,k2eRepoi)(x = kja® + k2af) 1,D133-D135
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@) x = 2,T569
1 ¢ sf-e
1,2,3, >---T576.
D124,D121,D122
TEOREM 577
*

xe(AB)ef ~ Ok 1,k2€Repoz)(x = & 2 e )
PRIMJERI
329 82 "5+ s €(BA)1,2* 530 8 e(AB)1,2-
3.2. FORME 1 PARAMETRI FORMI DVOGENERATORSKIH IMITANCIJA
3.2.1. s-FORMA I p-FORMA IMITANCIJE

DEFINICIJA 137
(ieN+ & A”eRe

o]
(V xt =xQ &
1=0

DEFINICIJA 138
(i€N+ & A”eRe

A
X. = X
(i:o 1 O

&

PRIMJERI

331 A A.s31

10 1

333 A A18*1 =

1=0

A C,s1-51
1=0 1

334

& ceRe & seH & x = (As)(Anal1l))

- . n+l n
(<N Y)YV xi = (V xi) + xn+l)).
1I=0 -0
& ceRe & s€E & xi1 = (As)(AisCl))
- n+l n n
(VneN )( A x, = (AX. ) +x ).
i-o 1 i-o 1 ni
A . 332 VB,s% =B +B,s" +Bpsw + B,s-
0 i-0 1 (o] X C N
A,, + A,s*.
0 i

=C + CnS1™ + Cr>8™
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TEOREM 578
n a(f-e)l
+ o _ VvV i=0 Bn-i ,
(Ve,t»ueRe) (Ym,n€EN+) (su (F-o)i "8 m 8(f-e)l =
1IYOEL~ A fcr

v=u+m-n(F-e)e
m
Dokaz \/‘AE
D e,Ff,uERe & * =fF - e & m.neN* & x £ J 1=0 SUP4
B

1,D137
V A.8 1M
@ x = 8u+(m—n)x I=0 1

V B1s1(*n)

1=H ~
2 >
m
_ 4y _*(m-i1)
(©) x::sv—%—A—Emm & v=u+ (m-n*
1=0
3,T569,D138
m  x(m-i) n *(n-i)
A3 AH -
@ x =8v_i1™o- 1-—— ~ -V 1=0 1
) m 8K(m—i)
n ,»(Nn-1)
AT — 1=0 Ai
i=0 B1
1,3,4 T578.-
PRIMJER 335
1 ? 1 8*
g kgk,p*+kgB2"+AEB3 —  gut2* B1 Bo
BB+Bls* 1 U S« U”™~1L, 3«

A3 A2 Al Ao
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T576,T578 >

TEOREM 579 A f~Q
x6 (BA)eF (<L k2€Repoz)(x - s&-K2 8 __
T577,T578
TEOREM 580
xe(AB)Qf *—*e (SKj.KkjiEe )X = af 1F e ).
n2 ®
TEOREM 581 mx
(f-e)i
f u V V
Y =S —— ee———— >
(Ye, €Re)(VmX,nX,mJ,nJ€N+)((e <f A X s o
Bja (t-e)l
m, (F-o)i i=0" 1
u Vv
y =&Y lr:]p— & ux,V {e,f} & (Vi) ( .CMDjJsRe z))
T (F-e)i
o\
V El.(f-e)l
xXx+y) =slbNMN2————————— & mTn€N
Vrrs«"671
i=0 1

(Vi)(El1,FleHep0z) < u = inf(ux,uy) &

u+ (m- nN( - e) = eup(ux+(mx-nx)(F-e), Uy+(m -n )(F-¢e))).

Dokaz
(D e.feRe A e < T A mx»nx>my»ny6N
m m
T Xi Y
Uy VA I8 u, 1¥nCie
« = g x 1¥d 18 Ay =gy ofe
nx - _
vg.gM vYpv M
i=o 1 i-o 1

ux,u €{e,f} A n=Ff -e A (Vi)(a= ,Bioc+ »Di€RepQZ)  Sup.
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1 >—- m n n m

u_~u; g y u_~u; ™x y

&% ( Vv Aisu Vv Dieu) + 87 ( \Y} Biau)(‘v Cia'i)
@ x+y M Aze =0 L= =0

X ny
( v Biaﬂ') ( v Dis'i>
i=0 i=o

& u = inf(u,\,u-r)

2,1 ~t
@B @wx -uy & ux-U =0 & uy -u =0) v
(ux +uy & ((ux~u=* & uy-u=0V (ux-u =0 &
u-u = *)))e
3,2,1i >— .
V Eis*1
@ x +y = sU"—~""———— & (Y1) (Ei,Fi€Repo2) & u = inf(ux,uy) &
V F,s*1
i—0 1

n = nx+tny & *m = 8up(ux-u+*(mx+ny), uy“*u+*(my+nx)).

B) "atsup(b,c) = sup(atb,atc) & a+inf(b,c) « inf(atb,a+tc)”.
(G.BirkhorfF, Lattice-ordered groups, Annale of Mathematics,
Vol 43,No 2,April 1942)«

4.5 >—
@) u+m* =sup(ux + n(mx + n ), uy + *(my + nx))

6.5 >——
() u+m* - *(nx + ny) = sup(ux + *(mx - nx), uy + *(my - ny))

7.4,1 >—-
@ u+ (m-nN( - e = sup(ux+(mx-nx)(F-e), uy+(my~ny)(F-e)).

1,4,8 >-- T581.
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TEOREM 582 mx
f-e)i
+ u VA iS( )
(Ve,feRe)(Vma,n ,mJ,nJeN (e < f & X =S X— ggr—- &
VB , 1(f_e)l
mv 1=-0 1
(f-e)i
u.. ¥_ \
y =s¥Y EO & ux»uy€{e ,f} ft (Vi) (A1 ,B1,Ci,Dj€Repoz))
(f-e)i
i\A—lo 1
¥m* io(f—e)i
x Ijr\y = g =0 & m, neN &
i\/:OFls(f"e)l
(Vi) (El,Fi€Repoz) & u = sup(ux,uy) &

u+ (mn-n)(F - e) = inf(ux+(mx-nx) (F-e), uy+(my-ny)(F-e))).

Dokaz
(D e,feRe & e < T & mx>nx>my>ny€EN+ &
m. ] .
ni V ni
u \% u V.Cis
x =8 X 1=0 & y=s =~
nx -
v B,8™ VyDj s7IL
1=0 1 i=0 1

u§iu%//€{e 0 & n="Ff-e & (VI€EN+) (A1 ,B1 ,C1 ,Di€Repoz) Sup.-

1,D129

@ x +y =s

& w = mf(U\)é,uy)-

2,1 >—
(u, :Uy & o “w="o & u
(ux ft ((ux-W=n & u \%

Cuy - \l/Jv=O & u,y—W=n)))
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2,1,3
Q} ni

X x ¥y = M iﬁo & (Vi)(El,Fi6Repoz) A
v Fj 8™
I=0 1

Uu=u*+uy -w-ux +uy - influx,uy) A m =mx + my A

x* - - + x - + + *x
n sup(ul w (mx . nJr) , u w (mjr nx) )-

B) ut(m-n)* =u +u —W+(mA-|jm )n—eup(uX—W+(m +n )*,uJ -w+(m +n )*).

(6) Ha + b = inf(a,b) + sup(a,b)”. (G.Birkhorf,Lattice-ordered
Groups,Annals of Mathematics,Vol 43,No 2,April 1942),

56 -——

@ ut(m-n)* = w-(nx+ny)* & inFr(ux-w+(mx+ny)*, uy“w+Mmyhx”" Ne

7,(5 u demonstr. T581) >---

@ u+ (m-nn = inf(ux + (nx - nx>*, uy +(By ™ n )*)e

4.6 >-—-

©® u = sup(ux,uy).

1,4,8,9 >---TH82.

TEOREM 583
(VxeTep)(S['u€ {e, T} YTIE {e, T}) (BTJn,neN+)

V A 18<f-5)1 -
T S R A

=0 A v F91
(Vi)(A1,B1,C1,D1€Rep0Z2) A v -u=(M-nN(F - A
WDHECivi =1 & DiAtai =1)).

Dokaz
VA,8I1f-e)l
(D 0 = {1 xeTef & (aiu<={e,fH(BmM,n«N+)(x = su

i=o 1
(ViKAM)JBMRe z) A (U + @ - nN)(T - e))e{e,TP}. Def.
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1,D127,T566 >---
(2 Gef e G.

1,7T581,T582 >---

A x,yeG —» XX +y)eG & X + y)eG.

1,2,3,T568 >

@) (YxGTeF)(FFILE {e, T} ) (Sm,neN+)(x =

4,T57B T583.

PRIMJER 336

V A 4s<f-e)i

su-~°

V B’S(f—e)i
i—o 1

(VD) (A1 ,BieRepoz) & (W + (m ~ n)(F - e))€{e,f}).

(D) X = s"°-5 + (2s°*7 + (1.5s0-7 + 4s0,5))

1,D127,T567,T569 >---

(@ xgT g 5707 & fF-e =12 &

0.7. 14 + 3s1-2

X
4 + 15.551-2  3577A

& ~0.5 - 0.7 = (1 - 2)(0.7 - (-0.5)).

3.2.2. ZAVRSECI IMITANCIJE

DEFINICIJA 139

v (f-e)i

(VxETeF)(x = s ’y’ _
(f-e)i

D139,T583 >---

TEOREM 594

(VxeTeF)(x = su-~ Ars(T el

1=0

W)
wd (X)

wr(X)
wd (X)

Sup.

u &
u+ (m-n)(F - e)).

u+ (m-n)(f -e) &
u)).
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D139,D133 >--

TEOREM 585

X€AeT wli(®x) =wd(X) = e.
D139,D134 5-—-

TEOREM 586

X€Bef wi(xX) =wd(X) = >

D1397T583,T585 >-—-
TEOREM 587

wI€Ssurjeke (TefoONOOFN**

D139,T583,T586 >--
TEOREM 588

wdeSSurJekc<Tef"{e*f))-

D139,T581,T582 >--T589-T592.
TEOREM 589

(WX, y€ETe))(Wl(X + y) = inf(wl(x),wi(y))).-
TEOREM 590
(WX, yETe))(Wl(X + y) = sup(Wi(x),wi(y)))-
TEOREM 591
(Vx,y6Tef)(wd (X + y) = sup(wd (x),wd(y)))-

TEOREM 592
(Vx,yeTef)(wd (X + vy)

inf(wd (x) ,wd (y)))-

D139,T576 >-—-—
TEOREM 593

XE(BA)OF —» wrX) f & wd(®®X) = e.

D139,T577 >—-
TEOREM 594
xe(AB)ef. —» w*(X) = e & wd(®X® = FT.

DEFINICIJA 140

(VXETeF) ((1(X) & (1) =b «>wl() m ).

a*»wl®

I
\

DEFINICIJA 141
(YXETeT) (M)

b »wd®) = ).

a *-*wd®)

& (A

I
\



144

D140,T587 >--

TEOREM 595
NoSsurtlekc”Nef *Na, b+

D141,T588 >--
TEOREM 596

d6SsurJekc(Tef»{a»b}).

D140,D141,T585 >---
TEOREM 597

XeAef ~* K*) = d(X)

»e

D140,D141,T586 >--
TEOREM 598

X€Bef Hx) =d”™~xX™ =b>*

D140,D141,T593 >--
TEOREM 599
XEBA)EF —» I(X) =b & d(X) = a

D140,D141,T594 5—-
TEOREM 600
xe(AB)ef I1(x) =a & d(xX) = b.

DEFINICIJA 142
(Wx€Te) (@) = 1(X)A(X))-

D142,T595,T596,T3 >---
TEOREM 601

Bsur jekc

TEOREM 602

i=0
((AOB1-A1B0) <0 * I(X) =a Vv ((AOBM-A"BQ) >04 I(X) =hb) 4

((AMBn-1-V IBn) >04dx) "a v« W 1 Vv A <04 de)=b))"
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Dokaz

som o« -)1
(1) G = {x: xeTep & x€Qag Vv x = U 1=0

I=-o0 1
((AOB1-A1BO) <0 & I(¥=2) vV ((AN-A"N) <0 & I(X)=b))}. Def.

1 >--
(2)Qef C G
@A x,yeGC & AKX +y)eQef. & * =1 -e &
m. my i
ni n
Uy 1YoV uy I\—/OC?S 1
X =s & 'y =s 7 7 &uX:uy:u Sup
X, _ni y,
B.s Vv D-S*!.
i=o 1 i—o 1

3,D127,T531fT5B3 >

(@)
m
v E,s™!
_ U 1=0 1 = ACA
X +y =s " (m>0vn>0)& (ViIMENF~Re )
v E,s!
i—o 1
o AP0 *B¥o & E1=-vi +AIDo+BICO+BoCI &
Fo - B®o & F1 =BoDI + BIV
4 >—o
(5) EqF1l - EXFO =D~ Bj _ AiBo, + -Ccn)
3.1 >—
&  poBI < AIBo & cCcoDl<ciV v
& AIBo<=ABl % CIDo<Vi» =
5.6 >—

@) (A(x) =a & EqFL - EIFq <0)v (I(X) =b & EIFQ < E~)

1,3,4,7,D159-D141 >—
@) (X,ye€G & I(X) =1(y)) —» (X + y)eG.
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O x,yeG & 4 (X +y)eQef & n=(-e

mx ) m.
v A.s*1 V*C a*1
x = gu 10 1 & y = 7o Ju— A
nx . nv
V B, s vVa¥*l
i—-o 1 i—-o 1
I = a & I(y)=0b Sup.
9,D127,D139-D141,7581,T583 >
(10) n
v E,s™
x+y:su'r7]0—1_ & (m>0 v n>0) &
v F,s"
i=o 1
Vi) (En ’F'eRepoz’\ &
0=Aoo & Eq =AR. + AL oo &
Fo =B®o & F1=-vi * By
10 >-—-
(1) EF, - EpF, = D2(A,By - A,B ) - BZC D,
9,1 -——-
(12) AoBI < AIB)
10,11,12,D139-D141 5---
13 Ix +y) =a & EOF1 < EIFQ
1,9,10,13 N—-
a4) ,yeG & -i(dx) = 1)) X + y)eG.
8,14 >-——-
(15) (Vx,y€6)((x + y)€0).
1,D127,7T581,T583 »D139-D141 (analog 15)
(16) (VX,yEG)((x + y)eG)e
1,2,15,16,T568 >-- . ]
V Ate '
A7) (Vxe(Tef\fief))(x = su 1 i
v B.sM
i=o 1
((AOB1-A1BO < 0 & 1(x)=a) v (AOBi"AiBO >0 & I1(x)=b)).



D127,T578,D139-D141,T568 (analog 17)
m
V Ata
(18) (Yx€Tef\Qef))(x = 8U-"p

ve .8 1
i—-o 1

(BN -rVIBn "08& dX)=a) v (ABn-rAn-18n < 0 T

d(x) =b))-
17,18 >--T602.

T602,T583 >
TEOREM 603
A v (f-e)l

(VXE(Tef\Qef))(X = su-IFT
B .S (f-e)i

a

147

((AoBi_’e"g )< 0& dXX) * b) Y ((AOB’I\—Q’\Q’\ >0 «:d(X) =a)) &
<0 & I(xX)=a))-

((AmBn-rVIBn) >0* 1(X)=b) v

3.2.3. VALUACIJA 1 DEFEKT IMITANCIJE

DEFINICIJA 143
(Vx€Telr. )W) =wd(X) - wl(X)).-

D143,T587,T588 >-—-
TEOREM 604
WESsur jekcef* fr o> F " en*

TEOREM 605

(WX, yeTeP)(w(x + y) + w(x +y) =wCx) + w(y)).

Dokaz
(1) x,y€TOF & w(x +y) +w(xX +y) =2z

@2) z =wd(xty) - wli(xty) + wd(x+y) - wl(x+y)
B) z = eupWd X)) ,wd (y)) - InFWl(x),wl(y)) +
+ Inf(wd ) ,wd (y)) - sup(wl(x),wl(y))

3,(6 u demonstr. T582) >-
@) z=wd® +wdy) - wl®x - wly)

1,4,D143 T605.

Sup.

1,

2,

D143

T589-T592
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DEFINICIJA 144
<v*«Tef)(h() = Jijp ).

D144,D131,T604 >---
TEOREM 606

NGNsU rj ekcN* {_1 10 ,_a}) -

T605,D144 >---
TEOREM 607
(Vx,yeTef)(h(Gxty) + h(x+ty) = h() + h(y))

D139-D141,D143,D144,T606,T607 > T608-T610.

TEOREM 608
v v (f-e)l
(VXE€ETef)(x = 8u 1_° h(xX) =m - n ).
WB 8<f-e)l
ivVoBI8
TEOREM 609
V A 18(f" €)i
(VxeTef)(x = gV 170 ((=n & 10)=d(x)) v
V B is(f-e)i (m=n+l & I(X)=a & d(X)=b) v
1=0 (m=n-1 & 10)=b & d()=a))).
TEOREM 610
V A 19(F-©)i AW 6O
(vxeTef)(x Y 1701 1ineo =-BO s 1
VB . s (fe)i S—» 20 0
i=o 1 limG) == M 8 d
S—>= n

D143,D144,T574,7585,T586,T593,T594 >—
TEOREMI 611-613

611 X€Oef - X< mO.
612 xe(BA)ef — » h(x) = -1

+1

613 XEMB)og . NCO



149

3.2,4. KANONSKA s-FORMA IMITANCIJE

T583 >-—-
TEOREM 614 p
- (f-e)i
1=0 1 U MOCIS
(Wx€TeP)((X = eu 777 — s- &
V BiS™-e)i
i—-o 1 i'o 1l
S N S |
ﬁEl(zAia,EBie)=0 & El( ~ Cjs1,f~ral)=0
i=o i=o \i=o 1 i—ol /
@) =a&Bn =D =1 \Y d(xX) =b & An =C = 1)))
m=p & n=q & A" = & BjJ = Dj))-
DEFINICIJA 145
3 . _ U 1=0
(VXETeT)(Slog(X) = (A®, BJ) < » (x =s
&B, .<*->*
i=o 1
na( Ea/ . eb/ )" O &
\ 1=0 1=0 /
@dx) =a & Bn=1) v @ax =b & AR = 1)) &
(&, ) = (Aq.A%ee<Am» Bq,B",==.Bn)))e
PRIMJER 337
_ 14 + 3012
1) x = ar- &  xeT Sup.-
4 + 155612 ¢ 3824 =5,7

1,D139,D141 >---
@)dx) =a & 3 14 0
E1((14 + 3si),(4 + 15.551 + 3s21)) = 0 3 14
3 155 4
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1,2,D145 >---
® Slogtd = ("=, 1, ] 1).

D145,7614 >--
TEOREM 615
(Vx,yeTeT)((Slog() = Slog(y) & (1) = I(y) v dC) = d(¥)))

- » X =Yy).

PRIMJER 338

D x€Te” & Slogx) = G,1,4,2,1) Sup.

1,T609 >---

(2)(Aq=8 & Ax=l & A2=4 & BQ=2 & Bl=l & I(X)=a & d(X)=b) v
(AQ=3 & Al=l & Bg=4 & B1=2 & B2=1 & I(X)=b & d(x)=a)

2,1,D145 >-—-

@B)dx) = a

3,2,0145,D0140,D139 >

@ I(xX) =b & x =58l — 7 — .
4 + 2ef"e + 82(f"e) -

PRIMJERI
339 <x«Tef & Slog(x) = (1,1)) X V.  x = g
340 (yeTef & SlogC) = B.1) _ X =8} .
341 (x<=Tef & Slog(x) = (1,3)) - X = 8f % )
342 (x6Tef & Slog(x) = (1,1,1)) X = 8e Y
X =or 1 f-e
t+s
f-e
343 (xeTef & Slog(x) = (2,1,3,4)) x =sf2*s "



3.2.5. DULJINA IMITANCIJE

DEFINICIJA 146

151

(Vx€TeF)(At(X) =k » Slog(x) = (A® , ) & k=m+ n).
DEFINICIJA 147
(Wx€ETeF)(AX) = *t(X) + 1).
DEFINICIJA 148

A+(X) - h(x) A.(X) + h(x)
(VxeTeF)(X8(¥) = -——-2-——- & Ap(X) = ——-—--2————- )
D148 >---
TEOREMI 616-617
616 (VxETeF)(Xs(xX) + A (X)) = At(X)).-
617 (VxE€TeF)(h(X) = Ap(X) - As(X))
D147,D146,D133,D134,T574,T576,T577 >---
TEOREMI 618-619
618 (Vx€Tef> (xeQef. <> AX) = 1).
619 (Vx€lef)((xe(BA)ef v x€(AB ) <» A = 2).
D146,T618,T619 >---
TEOREMI 620-621
620 (VxETer)(xEfiel > AMNX) = 0).
621 (YxETeM)((xE€E(BA)ei. v xe(AB)el) Xt(x) = L#
D148,7620,7T611,7621,T612,T613 >---
TEOREMI 622-624
622 (VxeTef) (X€QOF « vV ox) 0 & \p0 =0)
623 (VxeTel)(x6(BA)ef. «— X8() =1 & \px) =0)
624 (VxETeP)(x€(AB)ef <_ xpn) =1 & XQGO =10)
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TEOREM 625
Xt€Ssurjekc(Tef,N

Dokaz
D146,D147,T615 >--—-

(1) Xt6STunkc(TOF*N+)-

@ Q = {n: neN+ & (@x6TefF)(X*.(X) = n)} Def.

) 0eG 2,T620,T566
(4 xeTef & Xt(X) =n Sup.
GYWI) = e & (Vy€EBefFHXt(X + y) = n+l))

Wl =F & (WEAeP)(XE(X + y) = n+l)) 4,T587,T583,T615
®) neG — » (n+DeG 4,5,T567,2
(D N*Q Adom(Xt) 2,3,6

1,3,7 >— T625.

T625,D148,T606,T622,T611 >
TEOREMI 626-627

626 V Ssurjekc<Tef’N+)-

627 V Ssurjekc(Tef’N+K

D146,D148,D145,T608 >---

TEOREM 628

(VxeTeP)(Xp(X) =m & X8X) =n) Slog(X) m , B2)).

PRIMJERI

( x«T1i3 a Y = U t(X) ,X(X),Xe(x)»XP(*»)

344 X = 8 -J- Y=C0 ,12 , 0 , 0 )

345 X = .7-F - Yy=C0 ,1 , 0 , 0 )

36 x . a5 1 p - y=C1 ,2 , 1 , 0 )
2 + 3d

347 x =s 7 332 y=C2 ,3 , 1,1 )
5 +

348 x = s3 2% a2 ' y=(C2 ,3 ,1 ,1 )
3 + 4s

349 X =B 4s2 ¢ 8 - Y=(C3 ,4 , 1 , 2 )
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DEFINICIJA 149
(Vx,y€Tef)(Elg(x,y) = E1 DNANIN <>
Slog(x) = (A*, Bj) & Slog(y) = (CP, DJ))-

DEFINICIJA 150

a4 &t
(vx,yeTeF)(Elp(x,y) = E1 ( EAis » 2, Cy8 ) «—>

i=o i=o0

Slog(x) = (A®, Bj) & Slog(y) = (CP, Dj)).

PRIMJER 350
< < 4
x = g3_2.t+ ¢ & y =s 2 + 4s 5 S_ i
3 + 4sc 5+ 3s
4 3 < 2 0
Els(X,y) = & Elp(x,y) = 0 1 2.
3 5 1 4 2
TEOREM 629
(Vx,yeTeF)(As(xty) = Xg(x) + Ag(y) Elg(x,y) £ 0).
Dokaz
(1) x,y€Tef & wl(X) =ux & wl(y) = uy &
Slog(x) = (A®, b£) & Slog(y) = (Cf, Dj) &
X = yny A 1 & H = \_/Bis(f—e)i ft
1=0 =
0 = V Bi8(f'e)i & H = V Dis(fe)i . Sup.
y i=zol y i=0 1

@ Asx +y) = Ag() + XQ¢) & Els(x,y) =0. Sup -
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2,1,0149 >---
(5) (BH,H» ,HASpolinom(s))(Hx=HH» & H =HH" & -iHeRe).

3,1 >-—-
u. u

S yG_H»
@ x +y = JUuL

4,1,7628 >---
G XX +y) < XRCY + XQ(¥))

1,2,5 >—
G)(vx,yeTeF)(Ag(x+y) = Ag(X) + Xg(y) —“m Els(x,y) + 0).

(7)"2,2._Teorem. Operator R uzimanja rezultante je distributivan
prema mnozenju polinoma:
R(ab,c) = R(a,c)R(b,c) 1i
R(p-q.r,,..,u) = R(P,WR,WRCr,u)
(Kurepa, VisSa algebra 1, 1965, str,705).

1,T581 >-—-
® Xty -~ & 0 -8x OxHy + sy OyHx &
Xy

u = inf(ux,uy)-
O KlI’HXHyG) =0 & EIQX,Yy) =0 Sup.
9,7 >~-—-
(10) El(HXG)El(Hy 0 =0
10 >—
(11) E1(H, .6) =0 v El1(H ,6) =0
11,8 >—

(12) EKGNJI ,HX) =0 v EI(GyHx,Hy) =0

12,7 >--
(13) E1(GX,HX) =0 v EI(Hy,Hx) =0 v EI(Gy,Hy) =0

13,9,1,D145,D149 >—-
(14) Els(x,y) * 0 EN(HxHy ,G) + O

14,8,D145,T628 >——
(15) (Vx,y6TeF)(EIS(X,y) + 0 -» X8(x +Yy) = X8(X) + X8(®)).

6,15 >---T629.
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D150,T628,D145 >-——
TEOREM 630

(Vx,y€Tef)(Ap(x + y) = Ap() + Ap() Elp(x,y) £ 0).

TEOREM 631
(WX, yETeT)(As(x+y) =Ag(X) + As(y) 6>
Xp(x+y) =Ap() + *p(y) “*“h(x +y))=

Dokaz

) x,y€Tef & Afl(x +y) = As(X) + As(y) Sup.
@ Ap(x +y) =AQ(x +y) + h(x +y) 1,T617
©) = AQG) + As(y) + h(x +Yy) 2,1
©) = ApC) - hG) + Ap(y) - h(y) + h(x +y] 3,T617

B) (vx,y€Tef)(Aa(x +y) = Ag() + AQ(Y)
Ap(x +y) = ApC) + Ap(y) - h(x + ¥)). 1,4,T607

T617,T607 (analog 5) >---
©®) (vx,yeTeP)(Ap(X +y) = Ap) + *p(y) “ h(x +y) -»

As(x +y) = Aa(x) + XT(Y))-
5,6 >— T631.

T617,T607 (analog T631) >---

TEOREM 632

(Vx,y€ETef))(Ap (X + y)
As(x ? y)

APGO + Ap(Y) i
AGO) + As() + h(x + y)).
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3*3* INVARIJANTA 1ZOMORFNIH TRANSFORMACIJA t-STRUKTURE
3.3.1. KARAKTERISTICNI POLINOM IMITANCIJE 1 I1ZOMORFIZMI
t-STRUKTURE
DEFINICIJA 151
u-e f-u
(VxeT HIX) = sf'e £A.a2i + sf'e |;b,821
er i—-o 1 1=0 1
(A?, BY) = Slog(x) & = wl(x))
PRIMJERI
(X€Tef x =F - ¢
351 1Ks6-"2-) = A 8.
552 n(sf-4-) = B. 8 .
Bo .
A_+s
e o _
555 n(s B = A 808 + 8
354 n(e] = B. AS 8
BQ+s
A_4A- sl
35 net ° 1 = A +B_s+ Arfsz + a’m
B +s
o
A + sl 2 3
356 n(s] = B. ASs + BgST + sT.
Bo+Bis
A_+A58*+pN* 2 3 4
357 n(s® © —— ) = A +ByB+AB  +Bysy s .
Bg+BP
_ » *
38 n(sti°|V ) = B, A08+BISZ+A153+54.
BESE’fA+32*

D151,D145-D147,T609
TEOREM 633

(VxeTeF)AIK) = En Ai8*
1=0

n=Xx & AN =1).
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D151,T615 >---

TEOREM 634

O, y€TeP))((AICO) = 1T & AG) = 1¢y) v dx) =dy) -
X =Y.

T568 >---

TEOREM 635

(Ve,f,g,heRe)((e < & g<h) -—»

(SIF6Sfunkc(Tef>Tgh)) ((yk€Repoz) (F(kae) = ki>g &
F(ksf) = ksh) &
(Vx,y€TeF))(F(x +y) =F() +F(@y) &
(F&x +y) =FC) +F(YI))
DEFINICIJA 152
g»h
(Ye,f,g,heRe)(e < ¥ & g < nh e,fv je jedinstveno
odreden skup F 1z teorema 635).
D152,T635,T568 >---
TEOREM 636
g>h
(Ve,f,g,heRe)(e < f & g <h e,T esbijekc(Tef Tgh)) -
KONVENCIJA 5
(Ve,f,g,heRe)(e <f & g<h —-> X) —- X

D152,T635 >---
TEOREMI 637-638

637 (vkéRepoz)(esFr  (ka«) =ksg & e, ff*  (ks") = ks'D).

/9>h

-/Q» »h
638 (Vx,y€Tef) (e, fr x +Yy) =e,fr

>h g
Xx) + e,fr W) &

N\

e,ff/g>h(x + » - e,fv ) + e,fr ))-
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T568 >--—-
TEOREM 639
(Ve,f,g,heRe)((e < f & g<h) —»>»
@ ,F6Sfunko<Tet>Tgh)) ((VkERepoz)(F(kae) = ¥ < *
F(ksf) = ag &
(Vx,yeTef)(F(x +y) = F(X) + F(y) &
(F(x +y) =FO) + F(Y)).

DEFINICIJA 153

Jg>h
(Ve,f,g,heRe)((e < & g<h)y —-—» e, f/ J je jedinstveno
odreden skup F iz teorema 639).
D153,T639,T568 >
TEOREM 640
ig»h

(Ve,f,g,heRe)(e < f & g<h —» e,f/ eSbijekcrTef, Tgh™ *©

D153.T639 >--
TEOREMI 641-642

gth
641 (VkeR%’(;z](e,f/*g,h(kse) =i sh & e,f/l*g"' (ksf) = £ sg).

Jg>h A&*h n h
642 (Vx,yETOR) (e, P9 " x +y) = e 12560 & ety &

g))

h
e,f/*e’h() +e,fr/  (¥))

»

lg»h
.t A X Vy

T568,T589,T590,T634,D151,T636-T638,T640-T642 >—
TEOREMI 643-644

643 (VxeTeF)(WeTgh) (e fi 200 =y > () = rig) &

1) = 1N

644 (Vx€Tef)(Vy6Tgh)(e,f/ ig>h(x) y <» () = Ny &

4100 = 1))
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TEOREM 645
(vx6Te f)(n(x)€sHurwitz p#).

Dokaz

(). ..the stability of the physical system iIs assured If It can
be shown that the zeros of the polynomial

P(z) = a,zn + at cZ1-1 + ...+ agz + aft (619)

lie in the left half of the z-plane. A polynomial having this
property is called a Hurwitz polynomial.

IT the polynomial P(z) 1s written in the form
P(z) =m(2) + n(2) (628)

in which m(z) represents the terms involving even powers of z
(called the even part of P), and n(z) represents the terms
involving odd powers of z (called the odd part of P), accor-
ding to Eq.625, one has

m\iz) (629)

One has thus gained a new formulation for the necessary and
sufficient conditions that P(z) be a Hurwitz polynomial .Name-
ti1 the quotient of its even and odd parts must be a function
having simple poles on the imaginary axis only, and with posi-
tive real residues iIn these poles.

It 1s collatererally useful to digress for a moment and stu-
dy somewhat more carefully the properties of the function
Ip(z). First it should be observed that if i§(z) satisfies the
conditions 627, its reciprocal Vi|/(2) does so also.

Hence, using Eq. 629, the function

must also have simple poles on the imaginary axis only and
positive real residues. Both the even and odd parts mvz) and
n(z) must, therefore, be polynomials, whose zeros are simple
and lie on the imaginary axis".(E.A.Guillemin,The Mathematics
of Circuit Analysis, 1951, str.395-400).

(2) Xefij>L Sup.
(3)(PkeRepoz)(x = s"1l p v x =s / 2,D127

@ n(x) =s +Kk 3,D151,D141
G (YXEQN D (N(X)6SHUrwltz p#) 2,4

©)G = {x: «Tl;1 & n(x)sSHurwit2 p>} Def.

(M nl(l1 C G 6.5.T566

@) x,yeG ft Slog(x) = (@“, BY) & Slog(y) = (C~.D?) Sup.
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m m
v A s2l V A.s
—r = I=0 1 _M 11=0
(9)(x—£—S\r}B ’ vX-N s n
»S V B,s
i—-o 1 i—o 1
P P
\Y C,521 V C,s
- I=0 1 _P _il=01
(y e Q - 8 9 21 V y —T— a
D.S D.s
1=0 1 i—o 1

(10) (M + N)€SHurwltz p>

(A1) x +y &

(12) (x + y)€SHurwitz p. & X 7?
(13) x,yeG (X +y)eG & X + y)€GC
U4)(vx*TI>1)(n(x)iSHurwltz p>).

14,7636, T643 >---- To45.

*

3.3.2. 1ZOMORFIZMI D, R i R

DEFINICIJA 154
(Vx6TeF)(P°(x) = e,FF//6,F(X)).

E154,T657,T638,T568
TEOREM 646
(Vx6Tef))(POX) = X).

>

DEFINICIJA 155
(Vx€Tef)(DX)

Ae , T
e, f/a ().

D155,T640-T642,T568,D139 >---
TEOREMI 647-650

647 D€Sbijekc(Tef,Tef)

648 (VxeTef)(D(X) = ae+f~-).

649  (VxeTeF)(wx(DX)

650

M

P

X +y =MQ + PN

etF - wl(x) & wd(®x)

& (P + Q)€SHUrwitz px

8,6,D145

9,8,6,D151
9,T569

11,10,9,1

8,12,6
6,7,13,T568

e+f - wd (X)).-

(YX,y€ETet))(D(x +y) =Dx + Dy & D(x +vy) =Dx + Dy.



DEFINICIJA 156
?

|
(WxeTeP))(RX) =e,r/*  (X)).
D156,T640-T642,T568,D139 >—-
TEOREMI 651-654

651 RE€sbljekciTef, T

652 (VxETe)(RX) =1)
653 (VxeTef)(WI(Rx) = -wl(X)
654 (VX,y€ETef)(R(X + y) = Rx + Ry

DEFINICIJA 157
(Yx€TeT)(RX)

e, fr )=
D157,T636-T638,T568,D139 >--—-
TEOREMI 655-657

655 "~ S blJekc(Tef,T?>- ).

s~(e+tP)X).

656 (VXETOF)(R(X)

161

& wd@®x) = -wd(X)).-

& R(X +y) =Rx + Ry).

657 (VXETOF)WI(RX) =wl(X) = (e+F) & wd@Rx) =wd(X) - (e+P)).

PRIMJER 359
A+ AgS* + Kgen
(xgTef & »=Ff-e & x=s% 01 ¢
o T BTsll
B. + BIls' B.
DGO = s] &« ROe = s© + B18 &
Aq + ANS* + KAA* Ay +pAus* + AQSML
o 1

B. + BS



162

3.3*3« CETVORNA GRUPA PERMUTACIJA DVOGENERATORSKIH

IMITANCIJA

DEFINICIJE 158-161

158 P2 = {(x,Y)s X€T & y = x}.

159 pt = {GGY): X€ET & y =D(X)}
160 Rip = {(X,y); X€ET & y = R()}
161 Rqgi = {(,y): xeT & y = R(X)}

DEFINICIJA 162
Fj = {Pdqi] Dj | Rm) RT)=

D153-D162,D131,T647,T651,T655 >---
TEOREM 658

(VFE rT) (FESb1Jeke (T, T)).

DEFINICIJA 163

(VF-"FgCrjMF.~ F2 = FjFg = {(x,y): X€T

D158-DI163,T648,T652yT656 >—
TEOREMI 659-663

659 (VFErT)(FF = P°).
660 (VFCAHP~A F =F ft FP° = F).
661 DWRrp “ RiDp = 5|p*
662

663 Rypirip

ATAT & RIp*
REIQ|l = Da

D1621D1631T659-T663 >-——
TEOREM 664

T , N .

&

y = FI(F20C)D).-
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3.4. RASTAV IMITANCIJE U SERIJSKI I PARALELNI ZBROJ
IREDUCIBILNIH IMITANCIJA

TEOREM 665
(seE & x = (Ae)(F))
(x€Tef < * (AO,Al,..Am,BO,Bl,..Bn€ReIOOZ &
X = (A8)]se iIf2-—————-——- v x = (As)]sf  ———————- D)
iI=0 i=o 1
m n
(£E v 1+ sS Bi8 I)€SHurwitz p.
1=0 1=0
Dokaz
() Ay.===A,IByi.=.B €Rs &

m n
21
(! pmasth + al Bas?lyes, . ..

0 1=0
m n
| Ais21 1 B.321
F@ = | F(s) =8 '°© 1 Sup.
8 181521 I A8
1=0 1 1=0 1
1,(1 u demonstr. T645),D127,T576 >---
n
@ F(s) - 2 v xi€Yva”l,i )

2,D0127,D135,T566,T567 >---
B F)eTPLL

1,3,7T636,T645,T583,D137 >---T665.
DEFINICIJA 164

°s(e,f) = ,x! xiTer & QGy,zeTgPH)(x=? + z ~ *
-1 (As(Y) < Ae(®X)) 4 -1(As(@ < As(X)))}-
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D164,7665,D133,D134,T576 >

TEOREM 666

fis(e,) = Aef U Bef U (PA)ef*

T666,T662,T623 >——
TEOREM 667
(Vx6Tef) (x6Q8(e>fF)

DEFINICIJA 165

Xp(x) = 0).

fip(e, ) = i X€Tef & (Sy»zeTeP) X =y 1 * —*

4 (Ap(y) < Xp(x¥)) & -1(Xp(@) < Xp(X)))}-

D165,T665,D133,D134,T577 >—

TEOREM 668

Qp(e,f) = Aef U Bef U (AB)ef*

T668,T622,T624 >---
TEOREM 669
(Vx*TeT) (x6fip(e>T)

Xs@) = 0).

D164,D165,T666,T668,T629,T630,D148,D146,T622-T624,T611-T613

TEOREMI 670-671

670 (VXETeF)(X(X) = n

—» egzistira to¢no jedna n-torka pozitiv-

nih realnih brojeva (k">A-,»AgH == ee»kg) > takvih da je
Fwi(x) e (X) w.(O-e -

X = —-— k,se + sl B + - - k9sf ) .
f-e 1 i=l Bi + B’ f-e ~

671 (VxeTep)(X(X) =n

—» egzistira to¢no jedna n-torka pozitiv-

nih realnih brojeva (k™ AAfA2»ee ee kg)t takvih da Je
Wi(x>-e F ,, e/ PI )AL + b \ ,, F-*d®X®)
= +-—-—-kjS1 + s A — - + —— ~ k2se ) -
f-e X vV 1-1 I f-e



PRIMJERI

360 x - s-0.5 1$ £ 30S1;5 + 8

8 + 6al*' + a'

(X€T_0_5,1 ft

wl(x) =-0.5 ft wd(xX) =°*5 * AX) =5 ft X8BX) 2 ft
25-0*5 + + 8 1 ).
4 ¢ s1-* 2 + 81*5
361 x = s 6 + 68 €T 4 , fr
2 + 27a5 ¢ 5s6 il
wrMXx) =2 ft wd(X) =-1 ft X(x) =4 & Xp(x) =1 ft
X = 2eN + aMl + 3s-1 ).
3.5. MATRICA IMITITANCI JE
DEFINICIJA 166
Co C2 c4 C6 "7 C2n-4 C2n-2
cx Cl c3 ¢5*°° c2n-5 Cc2n-3
c2 co c2 C4. =~ C2n-6 C2n-4
) c-3 C1Cl ¢c3*=~% c2n-7 Cc2n-5
(Vx€Te)(FIX) =
Cn-4 Cn-2 Cn
-n+l Cn-5 Cn-3 Cn-1

(M) = ~Cisi ft ((i <O

I=0

v 1 >n) -» CA =0)))

D166,D151,(Def.13.9.1. Kurepa, VisSa algebra Il, str. 993) >---

TEOREM 672

(VxETep)(J1(X) jJe matrica koja rezultira i1z Hurwitzove matrice po-

linoma 1I(X), transpozicijom preko glavne 1 sporedne dijagonale)
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D139-D141,D145,D147,D151,D166,T672 >—

TEOREMI 673-676
673 (VXEl (Ji®®) je kvadratna matrica reda jednakog X(X)).
674 (VxeTgp)(Svaka poCetna glavna subdeterminanta matrice p(Xx)
je pozitivna).
675 (Vx«Tef)(Slog(x) = (A", Bj) — »
((glavna dijagonala od Ji(X) poCinje sa AQ <» I(X) =a &
(glavna dijagonala od p(x) pocCinje sa BQ 1I(X) = b))).
676 (VxeTef)(Slog(x) = (A®, B™") — »
((glavna dijagonala od p(x) svrSava sa » *» dX) = a &
(glavna dijagonala od p(x) svrSava sa Bn <-» d(XxX) = b))).
PRIMJERI
(xeT of & u = f-e)
- a kK -
362 MIa8-") W 363 ((GfF-]-) = b.]
a*+ S
364 p(se— —) pol 365 (i(sF— 5 = Bol
) Bg+ 8
AO AL O
A+ ARS . Bo B1 0
366 @(s® © M )= 0 Bg1l 367 (iGSF—A-2-)= 0 A0 1
0 0 Ao Al 0 Bo BI
8s,
A+ AB* s2* Bs B
368 (is® 1 ) = @11 .
o * Bpsn Ao Al
- 0 0
Bo Bl
‘B0 B1 1 8"
369 p(sf A0 Ai8 ) = Ao Al L -
Bg:+ Bis* + s2* Bo Bl
0 O

Ao Al



3.6. OPERATORI IZLJUSTENJA It i1 dt

DEFINICIJA 167
W (x) "
(VxeTef)((It(X) =kis 1 ~ & dt(x) = k2a

VA s(f-e)i

2

)
)

X “ sU S(_i:"6717"7h* kiO:& k2:r%>-

PRIMJER 570
(1) X = 52 6 + 65‘
2 + 27a3 + 5sv

1,Pr.361,D167 >---
@) 1tX¥) =3a2 & dt(x) =] s’1.

D167,T585,T586,D127 >—-
TEOREM 677
(Vx€Qe P (1T = dt() = x).

D167,D127,T585,T586,T677 >  T678,T679.
TEOREM 678

lteSsurjekc(Tef fief

TEOREM 679

dt€Ssurjekc(Tef*Qef)*

D167,D133,D134,T583 >--- T690-T683.
TEOREM 680
(VxeTeP)(I(X) = a -> u€Be))(t(u + X)

TEOREM 681
(VxETeF) (1)

1
(o

—»  (VueAeD){t(u + x)

TEOREM 682

(VxeTe ) (d() (MieBQY) (dt(u + X)

I
QD

TEOREM 683
(VXETpT) (X))

1|
(o}

->  (Yu€AeP)(dt(x + u)

u)).

u)).-

u)).

u)).
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3.7. PRETHO DN 1T1C1 N
IMITTANCIJA

TEOROA 684
(Vx€Tef\ QOF) BIyETeH)((IX) = a
aco =
Dokaz
m - n
_ 21 21

@ x«(Tefsigery & N0 =l 2y o 1 Sup-
1,D166 >---
@) Ay A Ag A3 * Ai+l

0 BoBI B2 * Bi

0 0 AN-cBN AMCBN - AN-CB; 4

0 0 B0 g1 » Bi1

X je matrica koja rezultira iz matrice |i(X), kad se ovoj svaki

A
parni redak pomnozi sa c =" 1 doda sa suprotnim predznakom
retku ispod njega

(3 Za svaku matricu Z, ;g%’§’°°’gg je determinanta pocetnog

glavnog minora n-tog reda matrice Z Def.

1,2,3,T573 >—-
@) 0 <r < X

:%;T%{T:::I}? - A %%%:%:?T::; & Y je matrica koja

rezultira i1z X, kad se ovoj ispusti prvi vredak 1 prvi
stupac.
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4,3,2,T674 >

n

() ¢ e Tu Bi)B”)sSHurwltz p>

5.T665
V. (Ai - F,B 1)S(f-e)l

©, = o Tl 0% DX
=0 1
V B.s(fe)i

y2 = = yl€ETeF * y2€Tef

m A ,(F-e)i

1,6,7T569,D139,T587,D151 >---

@ W) =e & X =-jp se + yl) Vv
AO

f & x =g-sf + y2)
o)

Wwleo

1,6,7,D0140,D167 >—
B) (VxeTef\Qef))(IyETeH)((I(X) = a& x
ax) =b & x

It +y) Vv
1O + y))

8,T678 >--T684.

D167|D166,T674,T665,T569,D139,T588,D141,T679 (analog T684) >---
TEOREM 685
(YXET 0 j@IYIT @) =a & x =y +d.(X)) Vv

@ -b & x =y +d*(x)))

DEFINICIJA 168
(Yx€(Tef\QeP))(PML(X) =PE(X) =y «—"m y je Jedinstveno odrede-
na (e,f)-imitancija iz teorema 684).

DEFINICIJA 169

(Vx€(TMOF\Qef))(pd1(x) = Pd(X) =y
na (e,f)-imitanciJa iz teorema 685).

y Je jedinstveno odrede-
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T684,7T635,D0168,D169 >---
TEOREMI 686-689

686 (Vx«TeR\Gef)(I(X) =a -» X = 1t(X) + PJU)).

687 (Vx«Tef\0ef)(I(X) =b —» x = 1t(X) + P (X)).

688 (Yx6Tef\0ef)(d(x) =a —» X = PE(X) + dt(X)).

689 (Tx«T,F\Orf)(d(x) =b —» x = PE(X) + dt(x)).

PRIMJER 371

(M) x « -0.5 16 t ?20.x-? * 8s Sup.

8 + 6bl-* + 3N
1,Pr.360,D167,D0140,D141
@ 1tx) =2270,5 A dXX) = 8a” A 11X =dX) a.
1,2,T686,T688

@) PE(X) = x - 2a"0,5 18 + 6al,5 A
8 + 6.1*5 & sb
P»(x) = x - 8a“0,5 - 8e' 0,5
x - 8a'0#5
>-0.5 16 + 30al*5 + 8s5
6 + 2.25al1-*
TEOREM 690

PI€Saurjekc(TefN Qef> Tef)#

Dokaz
(D) Pi«Sfunlcc(Tef\ Q ef.,Tef). D168,T684
@) xeTef Sup.
AIX) =a v I =b 2, T595
(4) (Su€BeH)(It(u + X) =u A (U + x)€ETefF\"el) v
GBwereH)tW + X) =w A  (w + x)6Tef\Qel) 3, T680,T681

Gl)u+x =w+PEQUu+X) Vv w+x=w+P*w+ X)) 4, T686,T687
(6) x€ETef —» (BueBe;H(x = Pr(u + X)) Vv

GBwgAe™M) (X = PA(w + X))
6,T567,1 T690



T685,D0169,T596,T682,T68?,T688,T689,T567 (analog T690)
TEOREM 691

Pd€Ssurjekc(TerX °ef,Tef#

TEOREM 692

(VxeTef\C?e ) (IPX)) =+ I(X) & dP>(X)) =dXx) ft
X)) = X - 1).

Dokaz
(D x6Tef\Qef & Slog(x) = (@J, Bj) & wl(X) =e

1,7T686,D0167 >---.

V L N1
@) PI(xX) = se ] Ba 8e
v B,e(f e)i
i-o 1
2 >
) A (F-e)i
@) Proo) = oF i1 1% Bi)s
V Bls(f e)i
i-o 1

3,D139,D147 >—-
@ wiPr)) = F ft wdPILG)) = wd(x) Tt
X (PM)) =X -1
1,4,D140,D141 >-—-
(5) (xeTeF\ QOF & I(x) =a) —» I(PIJV)) =b &

X(PA(X)) * X - 1.
T687,D167,D139-D141,D147 >——
6) (x€Tef\Qef & I(X) =b) -» 1(PIV))

XCP(X))

a &
X(x) - 1.

5,6,T595 >--T692.

D139-D141,D147,D167,T688,T689,T596 (analog T692) >---

TEOREM 693
(VxeTef\ Q eF) (1 (PA (X))

X(P(X))

I(x) & dPEG)) * dX) &
X)) - 1)
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DEFINICIJE 170-171
170 (Vx€TeF)(P°(X) = x & (VnEN+H)(n < X)) -»
P~(n+1)(X) = P P"n(x))).

171 (Vx€TeP)(P°(X) =x & (nEN+)(n < AX) -»
P”(n+1)(X) = P»P“n(x))).

D127,D146,D170,D171,T585,T586,T620,T625,T690-T693
TEOREMI 694-695

-X.(X) w, (X)
694 (VxeTef)(S'k€ERepozMP-1 1 ) = ks d
- -X. (X) w, (O
695 (Vx6Tef)(GTIkiRepoz)(pd * ) = ka
PRIMJER 572
Q) x =al* + 6.2 + & e,feRe *~ . f - e Sup.

l + 4s* + 3a
1,D139-D141,D145,D146 -——-
Q) wrMx) =e & wd(X =1 & IxX) =a & dxX) =b &

Slog(x) = (1,5»6,1,1,4,3) & Xt(X) =5
1,2,D170,D171,T686-T689,D167 >—— (3),(4).

3) PjB) = Bnﬂ(sf 1 +V ¢ a2» ) - P-3(» 1 *Flex 4+ e y =

1 + 4e* + 3s2* 1 1 + 2s*
p-2(-FJuxjrL = p-1(ee(1J-«-)) = sf.
1 1 + 2s* 1 1

@ p:5X) p-4(se 3 & 148 + U s2, . p-3(.» 42 + 176 -j_1965-2):
d d 3+128+98" d 15 + 42s

P“2(ee 14 - 422-) = Pd1(se 42 * 12"~) - 42ee.
5 + 14s 1



173

3.8. RASTAYV IMITTANCIJE U ALTERNIRANU
SumMu GENERATORA

T686-T691,T694,T695 >--- T696,T697.
TEOREM 696
WxETe;H(A(X) = n — > egzistira toc¢no jedna n-torka pozitivnih

realnith brojeva (G,H,I1,J,K,L,...), takvih da je

t-vrAx) e fo w,(X)-e -
X =-fFzt-Gsb6 + (HSf + (Ise (‘JS (KSe +-V r - LSf) ).
TEOREM 697
(yxeTei>))(A(X) = n — » egzistira tocno jedna n-torka pozitivnih
realnih brojeva (G,H,I1,J,K,L,=.=), takvih da je

F-w, (X) A w.(x)-e -

x = ( (-F=i-Ca Hsf) 18e) + isf) +. Kse) +
PRIMJER 373
fr =® LSSt £ 60t S3% Ocfieke 8 %=T-¢ - »

1 + 4s* + 3s2*

se + (sf ? (se +(sf+ (se + sf)))) &

>
I

x = ((((42se + 126sfF) + 3se) + sf) + se) + y-s¥* .
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3.9. ALGEBRA KLASA OSTATAKA MODULO NULA DVOGENERATORKSIH
IMITANCIJA KAO MODEL m".-STRUKTURE

DEFINICIJA 172

(WX, y€Tef)(x 0y <=» a(x) =aqy) & AQ() = Ag(y))-
D172,T617,T628,T608 >-—-

TEOREM 698

(Vx,y€lef)(x 0 y a0 =aqy) & Ap() = Ap(Y))-
D172 >---

TEOREMI 699-701
699 (VxeTef)(x 0 x).
700 (VX,yETeP))(x 0y —» y 0 X).

701 (VX,Yy,Z€ETei)(xX 0y & yO0Oz —» x 0 2).

TEOREM 702

x,y,z,UETen))(x 0z & yOu & EIsx,y) ~0 &
Elgz,u) "0 —» (Xx+y 0 z+ u).

Dokaz

) x,y,zfUETef & x 0z & yOu &

Elg(x,y) t0 4 Els(z,u) ~ 0) Sup.-
Q) w(x +y) = infw (@) ,.wru) =wr(z + u) &
wd (X + y) = sup(wd (2) ,wd (u)) 1, D172,T589»T591
(©) g(x + y) =q(z + v 2, D140-D142
@ X8(x +vy) = xsoo + XAY) 1,T629
B) - Xz s 4,1,D172
(6) = \s(z + u) 6,1»T629
1,3,,6,D172 >—— T702.
T702 >---<
TEOREM 703

(x,y,z,UETe)((x 0 z & yOu & Elpk,y) ~O0 &
El (z,u) "0) —» X +y 0 z + u)).



DEFINICIJA 173
(VxeTeF)(Ix]o = {y: y«Tef & vy 0 x}).

DEFINICIJA 174
Tef(©) = {z: xiTef A z = |x]0).

D173 »D133| T597»T622 >---
TEOREM 704

(vkeRepoz) (Aef “ k8el0)"

T704 >—-<
TEOREM 705
(Vk€Repoz)(Bef « |kaf |0).

DEFINICIJA 175-177
175 (Vx€TeF) (VFE{wl ,wd ,1,d,q,w,h, X, Xt ,Ap ,As}(F |x |[g) =F (x)).-

176 (VxeTeF)(VFE{D,R,S, 1t,dt})(FIxi0 = | x)]q).

177 (VXETeF) (VnEN+)(n < X(X) P“n(Ix]0) = IP-nCOIQ &
Pdn(Ix 10) = bSn(*>10))-

D174,D149,T670 >-—-

TEOREM 706

(VX,Y6TeF(0)) (HXEX) (HYEY) ((EI8(X,y) £ 0)).

DEFINICIJA 178

(VX,YETeF(OD(X ~ Y = Z xeX & yeY & Els(x,y) +0 &

Z « |x +yl0).

D174,D150,T671 >-—-
TEOREM 707

VX, YETeT(e)) (FXEX) (a-yEV) (Elp(X,y) = 0)).

DEFINCIJA 179
(WX, YETeFB)(X N Y = Z xeX & yeY & ElpXx,y) £0 &

175
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T704,T705,D174 >——
TEOREM 708

U ef,Bef}c T ef(e).

D178,D179,7T702,T703,T706,T707 ,T567 >---

TEOREM 709
X,YETeF(0) -» (X ~ Y)ETeF(O) & (X « Y)€TeF(0).

TEOREM 710
(VGeS) (({Aef,Bef}C Q & O0GTef(©@) &

XK,LYEQ -» (XM Y)«0 & (X« Y)«Q)) — »G = Tef(0))).
Dokaz
(OGS & GQ Tef(0) & A™eG & BMcG ~

(X,Y€G X2 Y)eG & (X ~ Y)eG) Sup
(2 (SzETef(0)) (-1 ZEG) Sup

2,1,D177,T694,T695 >——
X.(2)

B 4AC t (D)

3,7694,T695,T704,T705 >

(4) ~AeNEG Vv -iBerEG

1,2,4 >—
(5) Tef() C G

1,5 >—T710.

D178,D179» T570-T573,T575 >---
TEOREMI 711-714

711 (VX,YETOFO)D) (X w Y =Y v, X & XA Y =Y " X).

X AV "~z &
XAV ™ND

712 (VX,Y,ZETeFO)X (Y ~ 2)
X~ (Y~ D

713 -.(Aef = Bef).

714 (VXe{AeF,BefH(X " X =X & X " X = X).
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TEOREM 715
(YXeTef(0))(X - (Bef - Aef) = X - (Aef - Be¥)),

Dok az

Q) X*Tef(®) & X ~ =Y &

(Bef ' Aer>

™ (hef “ Bef) = £ Sup.
1, D175-D179,T629»T630,T623,T624,T589-T592 >—
@ X =XCO +2 & 1Y) =100 & d@¥) = dO) &
X2 = X00 +2 & 1@ =100 & d@ = dO
2, D172,D173,D146-D148 >—
@R Y=z
1,3 >-—-T715.

X

D178,D179,T589-T592,T623,T624,T629,T630 >——-
TEOREM 716
(VX,YETGF(0))((X ~ (BeF ~ Aef) = Y ~ (AOF ~ Bef)) X =Y).

TEOREM 717
XeTef(e) -* 1 (X (Bef N Aef” eiAef,Bef ,Aef N Bef,Bef ™ Aefr*

Dokaz
(D) X€Tef(O) &

X~ (BOF ™ Aef ™ 6 (Aef ,Bef,Aef w Bef,Bef ™~ Aeft/ Sup#

1,D175-D179,T618,T619,D147,T629 >---
@ XX - (BOF " Aef)) > 3 &

(Y6<Aef’Bef’Aef ” BefBef ~ Aef> ~  X(Y) * 2)
1,2 >— T717.

A3,T484-T486,T708-T717 >-—-
TEOREM 718
(e,feRe & e <) -» ATIFS) (FeSjNJeke(TeF(0) ,ME) *

F(Aef) = A & F(BOF) =B & (X,YETeF(0)) —*

FXX ™ Y) = FXX) () & FXX «Y)y =FX) ™ F(Y))).
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3.10. IME

DEFINICIJA 180
(WxeTeP)(WEM)BX) =Yy >

PRIMJERI

m
& EIC 1

ET PP & * =F - e

el i
374 MseAQ) = A.
A + s
376 0(se -"-g—) = AB.
AN + A,8
378 a(s9—2——1-) = ABA.
B + 8*
o)
Q A+ A18n+ g&"
380 $(s —— ) = APAD.
Bg + B—ls*
D180,D172,T286,T287 >---
TEOREM 719
(Vx,yc-Tef) (E(x) = $(y) <=

IMITTANCIJE

16O = 1) & XY = X))

.. n .
A.el, I B.sl) ~ 0)

1I=0 1

375 9(sf -F) B.
Bo

377 Ms1 BA.
BO + 8~
A + a*

379 $(sfF— ——————- ) BAB.
o * ByS

381 dsT AQ A8 5 _ papa.

0 *
BO+ E)}_b/ol- s2

x 0vy)

D180,D147,D151,D155-D157,T643,T644,T647-T649,T651-T653,

T655-T657,T90,T290 >-—-
TEOREMI 720-722

720 (VXETePU(D (X)) = D$(X)).
721 (VXETeF)U(R(X)) = DA(X)).
722 (VXETeP)(SRK)) = $X)).-

DEFINICIJA 181
(VxeTef)(d]x]0) = $(X))-



D181,D175-D179,T708-T719,T495 >-—-
TEOREMI 723-728

725 *€Sbi1Jekc(Tef(0) MpoZK

724 &(AOF) = A & *(Bef) = B.

725 (VX,Y6TefF(O)($(X v, Y)
MX « V)

$00
000 "

) &
o))

179

726 (VXETeF(0))(YFE{l,d,q,h,A, Xt ,Ap>AsHD(FOY)) = FCX)).

727 (VXETeT(0))(OMCX)) =DC0CX)))-

728 (YXeTef(0))(VnEN+)(n < AXX) -»

DEFINICIJA 182
(VXEMPOZ) (VYETeF(0))(0“F ) = Y >

D182,T724 >—-
TEOREM 729

»;£Eu) =Aef & *;J(b) =Bef.

D182,D135»D136 >—
TEOREM 730

O(P~n X)

$(P™n X)

*(Y)»Xx).

ref(BA) = (BA)ef & déF(AB) = (AB)ef

D178,D181,D182,T719,T670,T696,T706,T723-T725 >---

TEOREM 731

(VxEMpoz)(x = X1 v x2 *

P“nUX) &

P*n (0X))

Mye»; 30 ByI*»;I(X1)) (ay2«»; | (Xx2))(y * yx + y2>>*
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D179,D181,D182,T719,T671,T697,T/7/07,T723-T725 >---
TEOREM 732

(Vx€EMpoz)(x = X1 ° *2
(Wee™I(x)) (FRy €M (xD)(FY2€0°I(Xx2))(y = yXx ™ y2)).

PRIMJER 382
~NA O+ A8 + A982k

@) (sr— 2-—--pT-eT -(BABAB) ft » = F - e ft
+ 818 + q er

BABAB = (BA ~ BA) ~ BAB Sup.
1,T731,T732
@) k™ ke, kg, ky6Re) (sT V.  Al8 + A2@2

1 d 5 4 p 0 poz BO+ Bis*+ Bgs“*
kc + s
= (af K1 i J —1IL, ) + J2

k2 + a k4d + s k6 + k78



Cetwrti dio
m-TOPOLOGIJA

4.1. m-GRAFOVI

DEFINICIJA 183
Primitivni pojmovi m-topologije su dva beskonacCna,disjunktna
skupa nedefiniranih objekata, koji se zovu CvoriSta, odnosno
grane.
Simbolil za nedefinirane pojmove m-topologije su:

(i) V za skup c¢vorista,

(i1) E za skup grana.

D183 >--—-
TEOREM 733
VNE =0.

DEFINICIJA 184
G = {(X1,X2,X3,X4): X1C V & =-iX1 =0 & X2C E &

X3€STunkcNMX2» 1 & X4€STunkc™NX2»

PRIMJER 383

(D v1i,v2wWwNeEV & el,e2»e"€E

1,D184 >—-

@ {vx,v2 v} {el,e2,e™}, {(e™, {v2,v,1}), (e2,{vZ>Vv"}),
« , vADE, {(eM A),(e2,ab), en ,ba)})eG.

DEFINICIJA 185
(IX€G)(Vx=X1 & Ex=X2 & IX=X3 & wx=X4 * * x = (X", X2 X" X))

Sup.

181
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PRIMJER 384
@D X6 ft x = v ™ »w2}i{02502»03 {8 i {v iV2PD»(e2>{

©@1{3) I »{ (ANt @ I (@pba)}) -

1,0184,D185 >-—-
@ vx * {vi,v2} & Ex = {el,e2,ej} &

Jx = Holi{vli,v2}),(e2,{vli,v2}),(e5,{vli,vi}P} &
ux = {(OpAMe™ab), (e5,ba)}.

D184,D185 >---
TEOREMI 734-738

734 (VxeG)(Vx Q V & Ex CE).

735 (Vx6G) (IxESFunkc (Ex ,{{i,.k}1 i,k€Vx})).
736 (Vx«G)(UxeSTunkc(Ex>0)).

737 (VxeG)(-1vx = 0).

738 (VxeG)(Ex = 0 -m x = (Vx,0,0,0)).

DEFINICIJE 186-189
186 (Vx«G)(v(x) = <(VX)).

187 (VX€G) (VU€Q) (Eu (X) {e: e€Ex & wx(e) = u}).
188 (VxeG)(Vuid)(c u® =k (EU’(X)) .

189 (VxeG)(e(®X) = ™a(X) + eMX) + cBX)).-

D134-D189 >-—-
TEOREMI 739-740

739 (VXEG)(VU€Q)(eu(X) = k{g: ©CEEx & uvx(e) = u}).
740 (VxeG)(e(x) = K(EX\Eab(Xx)) = k(Ex) - eab(X)) .

DEFINICIJA 190

v23P»
Supe

(WxeG) (g(x) = (X1,X2,X3) ~ =VXx & X2 =Ex\Eab(XX ft
X3 = {(e,{i,k}): e€X2 & 1,k€Vx & 1Ix() = {i,k}} .
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PRIMJER 385
D xeG & x = ({vi,v2,v5},{el,e2}>{(el,{vl,v2}),(e2,{v2,v3}},

{(e",A),(e2,ab) - Sup.-
1,D190 >

@ 9 = ({vi,v2,v3},{el},.{(el,{vl,v2})}).-

Citat 1.

"An abstract graph, or simply a graph, may now be defined as fo-
llows: A graph consists of a nonempty set V, a ( possibly empty)
set E disjoint from V, and a mapping ™ of E into V & V. The ele-
menta of V and E are called the vertices and edges of the graph,
respectively, and < is called the incidence mapping associated
with the graph”. (R.G.Busacker, T.L.Saaty, Finite Graphs and
Networks, 1965, str.6).

D190,D184,D183,Cit.1 5—

TEOREM 013

Za svako xeG, gix) je graf, kojem su CvoriSta elementi od V, a
grane elementi od E.

DEFINICIJA 035
Za svako X€G, graf od x je g(X).

D035,T013,D190 >---

TEOREM 014

Za svako xeG, ako je y graf od x, onda broj CvorisSta u y jednak
je v(X) 1 broj grana od y jednak je e(X) 1 funkcija iIncidencije
uy je funkcija koja rezultira i1z Ix, kad se ispuste sve "praz-
ne grane'™ tj. grane karaktera 'ab".

DEFINICIJA 036

Za svako x€0, (geometrijska) shema od x je y (simb.yeSh(x)), ako
I samo ako y je geometrijski graf (crtez) izomorfan sa grafom od

X
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PRIMJER 386

) x€0 ft x = vitv2,v5,v4},{el,e2,e3,ed4},{(el,{v2,v3}),
@2i{v»3 (5 ,{y3>4}),(e4,W 4 ,v4))}, {(e”B),(e2 ,A),
(e5 ,ab), (&4 ,b)}).

1, D190 >

@) g = {1 ,y2,w ,va},{el,e2 ,ea},{e1 ,{y2>v5}),(e2 ,{v2 ,\3}),
(es»{vs ,VAPD).

2, DO35 >

A (3> 0 ~ HFfShX).

DEFINICIJA 191
(WEG)(smilogr(X) =(y: 78&5&wc vxit lyC ix&Wc WY).

PRIMJER 387

D X0 ft x * ({vi,v2,v5},{e1,e2,e5},{(el,{vl,v2}),(e2,{vi>v2)),
(631 (V2\3 P P{@i1»A), (e2»B), ("»ab)}). Sup.

1»D191 >

@ C { vt {@p{(@>» { ~ {C- A} subgrn*

DEFINICIJA 192

(X, VEG) (X« Y ((~e€Shi jeke<EXV ) * @ V ShiJekcrV  >>
(Yge))(Ix@ = {i.k} lyFe@) = {Fv(D),.Fv®} 1t

ux(g) * wy(Fe(g)))).

PRIMJER 388
@) x,y&0 ft x * ({vt,w}.{e1>2},{@ »{v ,v}),{(e2 ,{"1 ,vi})},
{@17A),(e2.,B)}) Tt y = ({v*,v4}.{e",ed},
{(& F{va»vs>),(e4> ) >{(€3»B )»(®4»A)>)= Sup.-
1,0192 >

Q) X« y.
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4.2. NADOVEZIVANJE m-GRAFOVA

DEFINICIJA 193
VX, y€G) (Fk(X,y) = xy = (Vx uV Eo Y Ey*’ x U 1y, «x U«y».

PRIMJER 389

@ x = <{vi,v2,\§}t{6j»2}>{( {v"Vv2)} (€2»{v2»5})},
{(e",ba) t @*A)D &

y = Qv2, . v 1» {02 % I{(C2+ (van3))y» (e3”1V2 V5D
{(e2,A),(e",B)D Sup.

1.D193 >-—-
@ xy = ({v»,v2,vr,va) ,{el,e2,e5},{(el,{vifv2}), (e2,{v2,Vv5}),

(e, {vz2,v*}P}.{(el,ba),(e2,A),(e",B)}).

D193,D184 >--
TEOREMI 741-744

741 (WEG)(xx = X)=
742 (VX,yEG)(Xy = yx).
743 (VX,y,zeGC)(X(yz) = (xy)z).

744  (Vx,yeG) (xyeG > (ExiiEy =0 Vv (eeExflEy —»

® - 1, & W@ =0 E)).
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4.7. JEZ 1K m-T OPOLOGIJE

DEFINICIJE 194-258
194 O = {x KV & X = ({1},0,0,0) }.
195 | = {x X0 & Vy 1 (1} }-

196 P = / = {x 16V & eeE & UE &
X = ({13 »{fe {C.{i,ipD}.{(, )P }

197 1/ = {X: Xe€c// & vx = {i} }
198 7/ U = {Xx: XEOM/ & Adom(u)x) = {u}
/U

199 i/ u = i0/nla

/ (©,W)
200 = {x: & Ex = {e} L
200 0 O - {x: i,keV & 1 Fk & x = ({1,k},0,0,0)}
202 e O = X0 0 & joy -
203 1 k = {x: x@ o0 &V ={i,k}}
204 0—0 = x: i,keV & 17k & esE & ueQ &

x = ({i.k}, e}.{C.{i.kP}.{C.u)P >

205 0—S-0 = {x: XX0—--0 & Adom(wx) = {u} }
206 | = fx: xeo- 0 & Vx = {i,k} }
207 lau =oH-o N 4 s

208 j(e’u)k {x: & Ex = {e} }-



/"@ uy>j® s fi® iz

<{  DoiC xx S7} = /)—@ 222
n/ n
2)
{ y>TYC » 3z sz} *
«{ y>5/: 9 :z}= y>® 022

«{ W®IC @ @C% bz sz} S ofx) 612

«f{ {T}=XA\A V (© ®)« :z} = ® 812

«{09IC N (EXN<PXk 2} = 0 @ AT2

T} = "AUXA V c'r:'>0:z z ="cr>T 912
LI 1> & i

SP?(Z*x) Z = r%n 112

«{T} = MAIXA Vv =7 Z = . H2

N 3(2<iCx) Z = 112
X]

CPOPCKR) > Z=0 @ 212

o (Z S (0="3UXa V 2=(AUXA>) =) A ({i0d=
* 0=@UX3 S 2=(PAUXA>)) S D~ A X T@Z (<))} = Sp 112

{ (=2 s (O="3UXS 9 I=(MAUXAX) u) a ({iCJ=z
V 0="3173 V I=(*AUXA)»)) V D~ X :(z«(iCo))} = B 0i2

« { ((0=Z = (0-*1U*3 * O0"~AUMN)E) A (O%3=z
V P auxa S ov*auxa)) * d™*x (z°CCX))} =% 602
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(e,w) u
224 X *{z: z20)-1<// Tt EAAE = {&}
225 0 —0-—-0 = {z: ze ™ (X,Y) & yeo—— 0 }.
226 0-i---6 {z: z . >DI & yei— B }e
227 0)—o0-"-0 = {z: Z&RL(X,Y) & yeo—"-o0 }.

228 @-i-"_& O0—4—&n 0)e™o0

229 {z: z20 —1I- & Eg\ Ex = {e} }
230 = {z: zzKX,y) & yeo— -0 }.
_0)
231 jy K = {z: zeicCMjok & yei— 45 ).
0)
232 = {z: ze ®X,Y) & Yy€o-"-—0 }-
235 [ V « t —
234 0---0 O = {z: z20 o ft X€EO— -0 }.
235 i— 0 & = {z: z20 S & xel— -0 }.
236 e-a-0 6 = {z: zei-—--o0 & & Adom(u>,) = {u} }
237 0_ vy = {z: ze0 »</ & Xe0— -0 }
238 u u / v = {z: z20)- & 45 3.

239 0---0---0 = {z: Z220)-0—-—0 & X€0— o }-
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240 T8 = {z: zZE(x>-£-1-8 & xti-u £ }L

241 3J(e,.WNF. VI8 _ . zeGofe<iii)B 4 xillaii>fc }.

242 cQ> = {z: z« R xf &  XEQ - 0 }.
- V -
243 |<l|J>k *{z: 5, « 0o & Vz={1,k} ft
Adom wz={u,Vv}}
(f.v) J
244 i<3>k = {z: ZEIO’V)DK & Ez={e,f} }=
(e, 1) v
() _u
245 (g”™0ok = {z: 7ei<Xx ft y€i<">k }.
y Vi \Y
246 0 O = {z: Z2EX.Y) & X,y€o > -
247 ioCCXI>ni *{z: Z£(xK>m & XxEIOCMNX>K Je
u w w \Y
KgEU_o
248 t6— Y% = {z: &ZPR2X,Y) & *1 UB &
_ o]
rwn yeEJL&JIJU 3}

249

{z: 26@5—‘1—5 & wei%k }s

{w: wEko(™)m ft iei% &

kev — ft meVJ_r ft -1i€{k,m }e-

%
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k
251 1 wel &
m
Jok ok
o ()
252 u = {z: zeia u & y€&-- }.
. €
N>m o)

uﬂv
253 m {z: z€il m& xe&—"-8 }.

254 ick— ) -bm m {w: W R(z>z) & VznVz=(k,m) ft
z=<2(X,Y) & VxFivy={ifk} ft mEVx ft 1xm}.

y z
255 ir@ym = {ws weib— HDm & Yyel— & zefe—9 1.

256 |ba = {w: W€ ~jon & z6(£E)YN-Tf1 }.
K-n
257 bal _ |ba * {w: w€ic(™)3n & ZEQ>TIlIM)8 ft
m* W/ -n <
7« &

ef & 1™k ft m™n }

258 - {X: X je definiendum iz D194-D208 1 D212-D257 }-
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760

761

762

763

764

765

766

767

768

769

770

771

772

773

174

775

xeo---0 *~» xgG & y(xX) =2 & k(Ex) =1 &
(x = {(e.{i.k})} 1+ K

(Vx€E0— 0) (X6 0——0 »  "e€Ex “m 2x(e) = u)).

X€E0-—0 <-» xXE0—o0 & u = A.

o—o = U{o— o, 0-5-0, 0-"-0, 0-"~-0].
i—4 = 474 = 0.
XET-"- di o=k
G-" & = & i"k) —» u=v & {ik} = {mn}.
rielali = {{i.k}.{e}.{Ce.{i.kP}.{(e.BPD} *-»

(i.,ke&V & eeE & i=Kk).
X,Ye{o , ,0-0, 0-0 & AX=Y) -» XAY =0.

V SaurJdekc(0><G» {Z: U '**G & vxnvy =° & ExnEy =°
& Z = {xy}p) v Z = 0}).

iSsurjekc(G><G” (' (xiG 4 z = M> Yy Z = 0}).
Tsurjekchrnr0” ~Z: ~xeG * vax>>1 4 z={x}) v Z7Ob)-
{VFe{d .41 xB D ((X*y>»)«F -“m ((y,X),2)eF).

(W*{+0,~ #P(Y,z,YL)6F * y1iYl & (X,yl,W1)iF *
OGY X, «F & X, €EX. & (X-,,z,W2)eF -

vl = w2).

0 O =b



776

7

778

780

781

782

783

784

785

786

787

788

&
ze(® ®) xX,yeG & VXHVy:O & E;/(OEy:O ft
z = (WUVy, EXUEyY, IxUly, wxUwy)=
zelo X) < X
© X Yy X Yy
zei%k «> Xx,y€C ft VXnvy={i,k} & 1£k ft
ExNEy=0 & z=xy.
(W,Ze{®® , <<X xT> 3 & -W=2) w N z=o.
(® (®
z€(® ®) v(z) = (X)) +v(y) -
ze(cC'" ) —» v(z) = v(x) +v(y) - 1.
() _
Z(C P ) > V@D = v0)+ V) -2
¥
® ® = ido(X>1 =0
O _ _
» = 0 = 1
(%)
X
(% = (@O 0) & i<x~>k = (& 6).
z«(@ @ ) ~ z=x.

y€i( x = ({i},0,0,0).

195
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789

790

791

792

793

794

795

796

797

798

799

800

801

Q{E;b = {x} <> ye(o o).

(£e(©

0)

& *€(0 0) & xe(0 ©)) ->

(® ® )m<® O©O>e

= (®

X, y€0

(x,yeo

y€O0I

V) =0 —» y=z.

©) mo - <(® ®) =(@ 0) " {xyi{z.w)
(0 g> =m 0o o,
JO
& iX!:y> o
©

» xeG & 1€V\VX & Y=(VX U{ 1 }»EX»™ XWX )#

xei —» (O

yeEonr(/n
RBe€E\ ExX)(y = x{i}.{e}.{(e.{i.i})}.{(e,w)P).

o177/

x€ic/

o) = (i o).

> yeG & i«Vx & UeA &

* O-~cfN X=y.

(e, TEE) (eET &

y = (i}, {o.f}, {(e.{1.i}),.(F.{i,ip}.{(e,u).(F,W)}))).

yE€(x>0

ye 0-"-0

y(e,u)

ViRV & K(E) = k(ED + 1.

<> XxXcG & 1€Vx & ecE\Ex & ueQ &
y = x{i}.{e}.{(e.{i.iP}.{(e.0}).



802

803

805

806

807

808

809

810

811

812

ze X)-0—--0 » zZe(X)-o0—-(%) & yeo——-°-

(5Te€E\EX) (Y

Ce&—

K

X

X€E(M@-2 & $) <» i,k,mEV &
wefi & (He€BE)(x =

xeil u

xeG & W & KEVAVX &

XEG & 1€Vx & k€VWx a

u
ye fj «> xeG & 1,keV & 13k & ueQ

(BeeENEX)(y = x({i,k},{e}.{(e, {i,.kP}, {(e,w})) .

]
o

\V/
«— P X6G &

X€&—— & V,, ]} < » 1i,k,meV
u,v€Q & (Sle,feE) (et &
x=({1,k,m},{e,f},{(e.{i.k}),(F.{k.,mP}.{(e,u),(F,V)} ).

1,k€v &

& 1™k &

ik &
({1.k,m},{e},.{Ce, {i.k}P} {(e,u)})-

1"k &

195

ucO &

x({i.k}.{e}.{(e.{i.k}P)}.{(e,u)D)

ik}, {e}, {Ce, {i>k})}, {(c, )P} <=*

e*E\Ex & ueQ.

& k™ &

u,Ve? &

Ge,fEE)(x = ({i.k}.{e,f}.{(e.{i.k}),(F{k,k})},
{Ce,w), (T, V).

ifm & k™m &

0---0— m € {0 00 o——cBo,oAc—bao,o cabo,
o-B_p B3, 0B.5ba 5B pab_g, gha hba_,,
ba _ab o o ab g ab g .

| AIBS8 nMiB =o

U

N
O ¢ (o—A—O—E—o 0=

ba’\ap

0 }-



819 k(U{Z: u,veQ = Z = o—o0—"0}) = 10.
820 k(U{Z: u,ven —> 2 = 52 K VB}) = 4% = 16,
821 «x(U{Z: u,veQ —> 2 = »Ow: = 10,

Awncv
822 k(U{2Z: u,ve@ — 2 = uow: = Am = 16.

(f,v)

(£,B)

823 %Em\ = S guper(X) = U &, 3 5,

§(e,A)f w\:..s. ¥ m\:,.mvr 1(e,A))/ :..Er



xd1LvA(CrY « X =
AW'Awanvw.

814 xm»Avw «> 1,keV & itk & u,ved & (He,feE)(eff &

x = ({1,x},{e,f},{(e,{1,k}), (£, {1,k})},{(e,u),(£,7)]})).
as o< O L = o0
&5 O»Abo\/ mO> T90> 6 .

S < O

Oa \mm >O® v xngga



824

825

826

827

828

829

197

ze (X)M<M))k e—» xeG ft 1€Vx & keV\Vx & u,veQ &

(?e,FEENEX)(e+f Tt x=(VxU {i& .EXU {e,F}, IXU {(e.{i.K}).
(*.{1.k}) wxU {(e,un),(F,V}).

v<x>e3 4 k(Ex)=4.

k_u _.m
Xe AIjB & (e, {k,mp6Ix & ((F,{i,nPH€Ix -»
1"u "n wx(e) = Dx ().

ok
wei «—> Xx,y,z€G Tt VxnVy={l) & VxTiIvz={k( ft
om v,\ﬁvw:{m} & i~k ft I™"m & k™m ft

exneyzo exnez:O & Ef E 20 & waxyz.

WE a X,y€G & VxIIw=() & kevx Tt m€vy

I~k & 1™ ft km Tt ueQ &
(Ste€b\ By (w=xy({K, m}. {e}. {(e.{k.m}p}.{(e.w)}).

WE€icT ™ u XEG & 1»k€Vx & meVNVx & 1xk & i1xzm ft
k~ m ft u,veQ &

(Se, FEE\ ExX) (w=x({i.k,m},{e,f}.{(e.{k.m}).(F.{i.m})},

{(e,w).(F,vI})).
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PRIMJERI

390

391

392

393

394

395

396

397

398

u
xeiév <~» 1€V A u,v,Q A (Be,f,g€E)(etf A e™g A
v frg A x = ({i}.{e.F.g}.{(e.{i,i}).(F.{i.iD,
@.{i.ip}r.{Cc.u).(f.v).(9.m)}))-
X€(0 0O 0) > xe((y) o) & ye(o 0).

zg(o—-—o0 0 — 0) » ze(¥ ) & x€o-~-0 & yeo---0.

k A m
ze(bamab).
i n

ic"k“om n (xXxVV~™Vi =0.

xeio-  <N\>M xeG & (a:e,f»geEjo~u,ve0)(enf & e”g A
rg A x = ({i.k,m},{e,f.g}.{Ce.{i.k}),

(f.{k,m}), (g.{k,mP}.{(e,w),(F,A).(9,V)})
ba

(1) xe(ba( )ab\ba a(™)b) Sup.

1,0186-D189»D185 >---
(@ v(¥)=5 A eba(x)=3 & £fab" =1 & «A()=2 A
Cg)=1 A k(Ex) =7 A c(X)=6.
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4«4. m-D VOP O LI

DEFINICIJA 259
(VXEGY Vi, JEVX) (T ()f = (X, (1.5)) )-

KONVENCIJA 6
i )j <-—*ixj.
DEFINICIJA 260
26 = {z: X€G & & z = ixjij«

PRIMJER 599
B

(D) XEICrT>] Sup«
A

1,7814,D0259,D260 >---

@ it 1xj, Jxi, JIxje2G.

DEFINICIJA 261

(Vixj ,kyme2G) (ixJ « kym » "1 6NMjekecNEXLEyN &
(3F2eSbi jekc(Vx-Vy))(<eeEx * Ix(«)=(n.P}) = (F1(e)) =
{F2(m .,F2(p)} & ux(e)=wy (F1(e))) & F2(i)E{k,m} & F, (d)e{k,m})=

D261,D192 >-—-
TEOREM 850
(Vixj,kyme2G) (IXj « kyin  —» X » y).

PRIMJER 400

D261,T804 >

X€10—-0——0J & y€ko-—-0" om) —» IxjJ « kym.
D261,D259 >-—-

TEOREM 851
(VxeG) (Vi ,kEVX ) (ixk » kxi).

DEFINICIJA 262
(VYBS)(VFESrelac(2G,Y))(VXEG)(Fx={((i,j),y): i, ft yeyY 1t

(ixj,y)eF})*
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D262 >---
TEOREM 8%2

(YYES) (YFESFunkc (26, Y)) (yx6G) (Ti , JEVX) (Fx (i, j)

KONVENCIJA 7
Za svako YeS,

to Fx =

Fx V3 K

y6

y9

J x4 ys5

4.5.

DEFINICIJA 263

za svako Xx€G,
se u sluCaju vecCeg broja elemenata od V
ti pomocu pravokutne sheme kao u slijedecem primjeru,
{C@,1),y1),((1,3).y2),((1,.K).,y).(0,1).y4).(d.1).Y5),
@»),y6),((k,1),y7),((k,5).y8).,((k,k),y9)},

= F(1X]))-

ako je Fx€Sreiac(vx ™ V »Y)t onda ce
, relacija Fx prikaziva-
tj. umjes-

pisat ¢e se:

TRANSFORMACIJA m-GRAFA TRANSPOZICIJOM CVORISTA

(yxeG) (TieVx) (Tj«V)(x1*] = (Y1,Y2,Y3,Y4)

Yx = (W\ (D)) U{> & Y2 =Ex ft

Y3 = {z: (Ix(@)={k.m) & -ii<{k,m} -» z=(e,{k,m}))
(x@)={i,k} & -ik=i z=(e,{i.k})) 4
(Ix(e)={1,1} > z=(e,{J.J} & Y4 =uyx

PRIMJERI

401 x6&-AJE<<3pm xi*n e8-0c e

402 xei A -mc(VOm Mok

403 xE@—& S-5-8) - XK 4 agBB8-

204 xe(M-s Bafl) — O eiocpon.

405 xe(8-U 8-5-8 U-8 1.54 g g -

11999 '*-2%3*-4§B-A0\5 7>O>§8>2><)0*-8 C(,AAY\T

° « X
a ).
g



D263,D185,D186 >-—-
TEOREMI 833-836
833 (VXEG)(VIEVX)(VJEVI(Xi>J =y yeG).

834 (WVxeG)(YIEVX)(XIM = X).

835 (VX6G)(Vi, JEVX)((XI) A>T = x7) .

836 (VxeG)(@, jJ€vx & +Hi=j —» yi>d) = v(x) - 1),

DEFINICIJA 264

ZGg_p =W » (xei-—-& -> ixkeW)
E() ) 1t IXJeWw & kym€Ww —»
I(XINY)mMEW & 1 (XJI*myk>1)mEW)

(VXCW) ((XET---T ixk€EX) & (ze(® ®) ft
IXJEX & kym€X I(XMY)mMEX A 10«EMyk M HmEX)
PRIMJER 406

j.B k
(1) =xe A&A

i m
1,D264

@) jJxmeGAp & - (ixk€2Gs p

D264,D259,D260 >-- T837-T838
TEOREM 837

D ,C 20

TEOREM 838
(VXEG) (I€Vx —“m -iixI€2Gs p

201

X=W)) .

Sup
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46. LJUSKA m-G RAF A

T734-T736 >---

TEOREM 839

(VX€G) (BIFxESrelac(Vx ,Vx)) ((1,k)EFX =k v
(Ge€EX)(I(wx(e)) = b & 1Ix(e) = \%

IeVvx)((1,3)eFx &  (J,KEXx))).

DEFINICIJA 265
(VxeG)(bx je jedinstveno odredena relacija Fx iz teorema 839).

D265,T839 >---
TEOREM 840

(VxeG) (Vi ,kévx)(@ bx k «» 1 =k Vv
{i.k}) v

Greeex) ) (IWx€)) =b & Ix(e)
(SJEVX)( bx J & J bx k))).
T840,D190,D035 >-—-

TEOREM 015

(YXEGC) (V] ,kE€VX)(]J bx k, ako 1 samo ako J = k i1li "JH 1 "K' po-
vezani su putem u grafu od x i1 karakter svake grane puta pocCinje
sa b).

T734-T736 5—
TEOREM 841
(WxeG) (FFIFx6Srelac(Vx ,Wx)) ((1,K)EFX «-» (@ =k Vv

(TeEEx)[d(w>x(e)) = a & Ix(e) = {i»k}) Vv
SIEV) (i, peFx &  (J,kEFX))).
DEFINICIJA 266

(VxeG)(ax je jedinstveno odredena relacija Fx i1z teorema 841).

D266,T841 >---
TEOREM 842
(WXEC) (VIL,KEVX)((T ax k «» 1 =k Vv

(FReeEx) (d(wx(e)) = a & Ix<e) s {i,k}) v
Gjevx){ ax J & J ax K)).
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T842,D0190,D035 >
TEOREM 016

(WxeG)(Vj,k€vx)( ax k, ako 1 samo ako j =k 1lr "J" 1 K" po-
vezani su putem u grafu od x 1 karakter svake grane puta zavrSa-
va sa a).

PRIMJER 407
k A m

XX(b ab ba)

bY = {(i,0D),(J. DiIA-m,(3,n), K, K, Mm,m),m,n),(m, )., J),
(,m),(n,nN} &
ax = {(i HVA, 1), k,k),k,m),k,n),(m,k),(m,n),(n,k),(n,m),

(n,n)}.

T840,T842 >--—-
TEOREMI 843-845

843 (VxeG)(VIEVX)(Vse{a,b}) (i sx i).

844 (VxeG)(Vi,k€Vvx)(Vse{a,b}P (i sx k k ex 1).

845 (VxeG)(Vi, keV )(vse{a,bP( sv I & j st k i s k).

DEFINICIJE 267-268

267 (Vixke2G)(1(ixk) =s - ((ibxk & s *b) v
(—1i(i bx K & s = a))).
268 (Vixkg26)(d(ixk) = s » ((lak & s=a v
1 (G ax KN & s = Dhb))).
D267,D268 >---
TEOREM 846
~Nensurjeke (2G,{a,b}) & S surdekc(2G,{a,b}).
D267,D268 >-  T8471T848.
TEOREM 847
(Vixke2G) ((1(ixk)=b i bx K & (I(ixk)=a iibx k).
TEOREM 848
(Vixke2G) ((d(ixk)=a i ax K) & (d(ixk)=b ni ax k))-
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T843-T848">——-
TEOREMI 849-856
849 (Vixi€2G)(I(ixi)=b & d(ixi)=a).

850 (Vixj626)(I(ixj)=b ->I(ixi)=b) & (d(ixj)=a -» d(jxi)=a).
851 (Yixj,§xk€26)(1(ixj)=b & I(xK)=b) -» I(ixk)=b).

852 (Vixj,jxke26)(d(ixj)=a & d(jxk)=a) —» d(ixk)=a .

853 (Yixie2G)(-j I(ixi)=a & -,d(ixi)=h).

854 (Vixj€26)(1(Ixj)=a Igxi)*a) & (d(ixj)*»  d@@xi)*b).
855 (Yixj, Jxk€26)((I(ixj)=a «+> I(ixk)=a) —» I(ixk)=a).

856 (Vixj, jxke2G)((d(ixj)=b «+» d(jxK)=b) —m d(ixk)*b).

DEFINICIJA 269
(Vixg€26) (q(ixg) = 1(ixj)d(ixj))-

D269,T846,T3 >—
TEOREM 857
g€Ssurjekc(2G,0)#

D269,D262 >--
TEOREM 858
(vxeG)(ax = {((1,J),w: ¥,J€vx & q(ixj) = u}).

PRIMJER 408
B

(1) =xeB-2D.§ ba n Sup.

1,7T858,K7 >
h i K m n
h ba ab ab ab ab
i ab ba ba ba B
k ab ba ba ba B
m ab ba ba ba B
n ab B B B ba
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T849»D269 >---
TEOREM 859
(VixI€26) (q(ixi) = ba).

D204,D205,T758,T777,T847,7T848,D269 >---
TEOREM1 860-862

860 xE(1 &) —»  q(ixk) ab.

861 X6 I-HJF —» q(ixk) =u

862 ze(® ©) = (VIEV,)(VKEV, )(a(izk) = ab).

DEFINICIJA 270

(Vixj€26) (qs (ixj) = q8(q(ixj))).-
DEFINICIJA 271
Vixj€26) (ap (ixj) = qp(a(ixj)))-

D270,D271,T859-T862,T217 >---
TEOREMI 863-867

863 Xx«4 q8(ixi) ba & qp(ixi) BA.

BA.

864

— gq8(xk) ba & qp(ixk)

865 (X€( 6) V xei_sM> —» qdg(ixk)=AB ft gy(ixik)=ab.

866 x«U--S _ q8(ixk) = qp(ixk) = A.

867 J3S - gf(ixk) = gp(ixk) = B.

TEOREM 868

ZE® ~ (VI€VX) (VmEVY ) (ga(izm) = qs(Ixk) ~ q8(kym)).
Dokaz

M x,y€0 & Vxnvy = {k & ExIIEy =0 & z = xy. Sup.

1,T847»T848,T855 »T856, T160,T161 >

@) vievx)ineWw) (1 (aizm) inf(A(ixk),l(kym)) &
d(izm) sup(d(ixk),d(kym)))
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2,D269 >--—-—-

(3) q(izm) = inf(l(gq(ixk)),I(a(kym))sup(d(q(ixk)),d(q(kym)).

3,7T162,T164 >-—

(4) q(izm) = q(q(ixk) ~ q(kym))

4, D270,T221 >—

(5) gs(izm) = qg(q(ixk) ~ q(kym))

5, T237,T221 >—

(6) qg(izm) = qg(ixk) * gs(kym)

1,6 >—--—-

(7) (Vx,yeG)((V |’iJ\./ = [k} & E fi EJr =0 & xy =12) -»
(VieVX)(YrrK=Vy)(qo(ixm) = gglixk) ™ q,(kym)).

7,T778 >----T868.
D269,D271,7T160,T161,T163,T165,7T221,T238,T779,T847,T848,T855i T856,

(analog T868) >—
TEOREM 869

zeic(gg))k —» gp(izk) = gp(ixk) ™ gp(iyk)

4.7. SUVISLOST mG RAF A

DEFINICIJA 272

(YXEG)(x» = (Y,Z) Y =g(x) ft
Z = {(e,u): eeEx\ Eafe(x) & (e,u)€Q)x})
PRIMJER 409
(fHha)
(1) xe (1 (e,A)k< )m Sup
(g7ap)

1,D272,D187 >--—--
(2) x*= ({i,k,m,n}, {e,f}, {(e, {i.k}), (f{k,rri)}, {(e,A),(f.ba)})

D272,0186,D189,D190 >----
TEOREM 870

(VxeG)(x,6G ft v(x*) =v(xX) & e(x*) =e(x) ft g(x') =g(x))
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DEFINICIJA 273

(VxeG)((n(x) =1 »-i (Gy, zeG) (x*€((y) (2))) &

(VneNpOz) (ti(x) = n+l (3y,zeG)(x'e((y) (z)) & *(y)=n &
*(z) = 1))).

PRIMJERI

410 X6 V . >l(x) = 1.

B

411 xg(o----A---o 0--~_0) ) n(x) = 2.

412 xe o--ab o—-B-o TI(x) = 2.

43 xe(0c y oo o «(x) = 5.

Citat 2

"If the graph G happens to be an unconnected graph, as in Fig.
I-11(a) then it is obvious that it must consist of a number of
"connected pieces".We next attempt to make this intuitive con-
cept precise.

By Problem 1-12, the existence of a path between vertices is
an equivalence relation. Any such equivalence relation defines
a partition of the vertices of the graph into sets such that
any two vertices in a set are connected by a path in G. Alter-
native”, we could also construct the sets. Beginning with any
vertex v, , consider ali the vertices of G which can be connec-
ted to v, by a path in G. Then the elementa of G incident at
these vertices constitute a connected subgraph Gs.Furthermore,
if any other elementa of G is added to this subgraph to form
@', then @ is not.connected. Thus Gs is a maximal connected
subgraph of G. G may or may not have any more vertices that
are contained in G .If G has other vertices(not in Gs), consi-
der one of these vertices f . By a similar procesa, we can now
construct a maximal connected subgraph containing \j « The pro-
cess can be repeated until there are no more vertices left,
provided G is finite. The number of these connected subgraphs
Is denoted by p
Theorem 1-3. The decomposition of a graph into maximal connec-
ted subgraphs is unique.

Theorem 1-4. p=l for a graph G if and only if G is connected".
(Seshu-Reed, Linear graphs and electrical networks, 1961,

str. 16-17).

D273,D272,D190,Cit.2 >--—-

TEOREM 017
(VxeG)(n(x) je broj maksimalno povezanih subgrafova (maximal

connected subgraphs) od g(x)).
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TO17 >-—-
TEOREM 018
(YXEG)(it(x) = 1 «—» g(x) je suvisli graf).

D273,D272,T746,T757,T762,T777,T778 >—
TEOREMI 871-877.
871 xeo —» *(x) = 1

1L *€Ssurjekc(G,Npoz)#

873 X6 O-H-O & U€{A,B,ba} _ *(x) =1

874 (XEO 0) V X OSb0) _ *(x) =2

875 (YxeG)(Ex =0 —» *(X) =Vv(X))e*

876 Zi(® 0 ) —» n(z) =*(x) + *(y).

877 ZIi0-0-® —> *(z) = *(X) + *(y) -

DEFINICIJE 274-277

274 (Vx6G)(YIeVx)(Jila = {Jj J«x 4 ) i]).

275 (VxeG)(* (x) = k({i: iiVy 4 Y = il }>) -

276  (YxeG)(Yiivx)(]i]b jevx 4 jbx i}).

277 (VxeG)(*b(x) = k({Y: i«Vx 4 Y = li|lb }))

PRIMJER 414
ba b ab

(1) x€(lo ab -<~"M))k Sup.
ba A A

1,D274,D276 >--—-

(2) 11 ={i}, il =kl ={jppk}i Im =In] *Ip] !{m,n,p} A

X X X X X X

lilb ={i}» 1jlb =1klb ={j,k}, [mlb =In]b ={m,n} |plb ={p)e
X X X X X X

1,2,D275,D277 >—
(3) * x) =3 A *b(x) = 4.
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D275,D277,D273,T017 >---T019,T020.
TEOREM 019
(Vx,y€G)(*C|(x) = *(y) » vy rezultira iz x uklanjanjem svih

grana kojima karakter ne zavrSava sa a).

TEOREM 020
(VX,y€G)(*b(x) = *(y) *—» y rezultira iz x uklanjanjem svih

grana kojima karakter ne pocCinje sa b).

D275,D277,D185,D186,T777,T773,T840,T842 5----
TEOREMI 878-880
878 xeG A Ex= 0 —» *a(x) = *b(x) ~ y(x)«

879 z€((x) (y) ) — (VS€{a,b})(«s(z) = *8(x) + *8(y)).
880 ze (x)—o—y) (Vse{a,b})(*8(z) = *0(x) + *Qy) " 1)*

DEFINICIJA 278
(VxeG)(C(x) = e(x) - v(x) + *(x)).

DEFINICIJA 279
(VxeG)(R(x) = v(x) - *(x)).

PRIMJER 415
A

(1) Xe&< Amﬁ. 028 , 8b e ) sup.
B

1,D0186,D189,D273 >—
(2) e(x) =8 A v(x) =8 A *(x) =5.

1,2,D278,D279 >—
(3) C(x) =8-8+3 =3 & R(X) =8-3=5
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Citat 3

"Definition 2-9. Nullity. The nullity of a graph with e edges,
v vertices, and p maximal connected subgraphs ie [i= e - v + p.
Nullity ie also known by the names of cyclomatic number, con-
nectivity, and first Betty number.

The fundamental system of circuite for an unconnected graph
i0 obtained by taking the fundamental 8ystems for each maximal
connected subgraph.

Definition 2-10. Rank. The rank of a graph with e edges and p

maximal connected subgraphs is v - p"

(Seshu-Reed,Linear graphs and electrical networks,1960,str.27).

D186,D189,D190,D273,D278,D279,Cit.3 >--

TEOREMI 021-022

021 (VxeG)(C(x) je broj suvislosti, odnosno broj temeljnih pet-

lji grafa od x).

022 (VxeG)(R(x) je rang, odnosno broj temeljnih rezova grafa od
X).

Citat 4

"Definition 2-11. Cut-set. A cut set is a set of edges of a con-
nected graph G such that removal of these edges from G reduces
the rank of G by one, provided that no proper subset of this set
reduces the rank of G by one when it is removed from G’.
(Seshu-Reed, Linear graphs and electr. networks, 1960, str. 28).

T847,7T848,T015-T018,Cit.3 >--—-

TEOREMI 023-024

023 (Vjxke2G)(I(jxk) = a » j i k nisu povezani putem u grafu
od X ili egzistira rez (cut-set) u grafu od x i karakter sva-
ke grane reza pocCinje sa "a" i uklanjanjem grana reza rezul-
tira graf u kojem j 1 k nisu povezani putem).

024 (Vjxk€2G)(d(jxk) = b <—» j i k nisu povezani putem u grafu
od x ili egzistira rez (cut-set) u grafu od x i karakter sva-
ke grane reza zavrSava sa "b" i uklanjanjem grana reza rezul-
tira graf u kojem j i Kk nisu povezani putem).

DEFINICIJE 280-283
280 (VXeG)(RO(X) _ sp(x) - 1).

281 (Vx«G)(Rb(x) 1).

*

*a(x)

282 (VxeG)(Cg(X) = wa(x) + Boa(x) -~ VX * *g(x)

283  (VxeG)(Cb(x)

Eb (x) o fba(x) - v(x) + *fe(x))



PRIMJIER 416

Sup.

1,D186,D188,D275,D277 >-—--
(2) *b(x) =6 & . 4y =4 & v(X) =10 &

Eba(X)' 5 & eA(X) =5 & eB(X)= 5

2.D280-D283 >—
(3) Ra(x) =5 & pgyy) =3 & Ca(x) =2 & Cb(x) = 4

D282,0283,T021 >--—-—-
TEOREMI 025-026

025 (VX€G)(C (x) je broj suvislosti grafa m-grafa koji rezultira
iz X, uklanjanjem svih grana kojima karakter ne zavrSava sa
"a").

026 (VxeG)(Ct)(x) je broj suvislosti grafa m-grafa koji rezultira
iz X, uklanjanjem svih grana kojima karakter ne pocCinje sa
llbll).

D280-D283,D275,D277,T878-T880 >-—-
TEOREMI 881-888

331 (VX€G)((eeE & w (® = ab) —»
= Bb(x) = v(x) - 1).

Ra(x)
882 (VX€G)((eeEx & -id(wx(e)) = a) Ca(x) = 0).
88 (VxeG)((e€Ex & -il(wx(e)) =b) - Cb(x) mo).

834 (VxeG)(Vse{a, b})(0 = Cs(x) & 0 & RS(X)).

885 «<® ® ) - (Vse{a,b)(Rflz) = Ra(x) + Rs(y) + 1).
886 z«(® © ) (Vse{a,b})(Cs(z) = cgax) + CB(Y))*
887 Zi0-0-® - (Vse{a,b})(Rs(z) = Ra(x) + Rs(y)).

888 Z6® ~°—(8) —» (Vse{a,b})(Cs(z) Ca(x) + C8(y)).
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D275,D0277,D0280-D283,D186,D188,1T749,T7/57,1T760,T761.7T809,T814
TEOREMI 889-906

(VXEG)(Y = (haoe p(yy Ra(X) ,RD(X) y(x) -Cb(X)))

—>

889 X€0 —» = (1, | 0, 0, o, o ).
.ab

890 xé€cr vx = (1, I o, o, 0, 0 ).
.ba

*

891 xeo — yx = ( 1, I f 0, 0, If 1 ).
A

892 xec’ w=(1f 1f 0 0 if 0 )
B

893 » / —  yx = (1 | f 0, 0, 0, 1 ).

894 X€(0 0) — oy =( 2 2, If | f 0, 0 ).

g5 €0 o0  _ . =( 2 2 i 1f 0 0 )
ba _ :

896 XE0-—=-0  _ yy = ( I |f 0, 0, 0, 0 ).
A

897 X60— 0 — oy - (It 2, If 0, 0, 0 ).

898 X0 —O — v =( 2 |f 0, If 0, 0 ).

899 XCoabOabo . v = ( 3. 3, 2, 2 0, 0 ).

900 X€0—0—0 —» Yx = ( 1, 3, 2, 0, 0, 0o ).

901 X0—0—0 — , = ( 2 2, |f If 0, 0 ).

902 X60—6——0 —» , = ( 3, If 0, 2, 0, 0 ).

903 —  yx = (If If 0, 0, If 1 ).
A

904 > vy = (If 2, If o, If 0 ).
B

905 > =( 2 If 0, 0, 1 ).

o< o vx = ( If )

B

906 v = ( If I f 0, 0, 0, o ).



DEFINICIJA 284
(VXE€G)(Xg(x) = e(x) - v(x) + 1 - C&x) - Cb(x)).

PRIMJERI
ba ba

417 xe B>< —» Xg(x)
b ba
B B

418 xe¢ ()/ — » X8(x)
B
B B B

419 xe Xs (x)
A A A

420

421

422

423

424

196

426

xe Xs(x)

x€ Xg(x)

ba ba ba
e X e

B B
X« Xs(X)
A A
xe(o 0) Xg(x)
¥€0ab0aboabe X5 (%)
B
XE( A A) Xs (X)

4-1+1-4-4

3-2+1-0-2

7-5+1-0-0

6-4+1-3-3

8-7+1-0-0

8-5+1-2-3

4-4+1-0-0

0-4+1-0-0

0-4+1-0-0

4-4+1-0-0

213
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D284,D0186,D188,D0189,T889-T906 >--—-
TEOREMI 907-915

.ab
907 X€( o U o ) — Xs (x) 0.
.ba ba
908 xg( o U % Xs(x) -1.
Q L
909 xg( </ u~/ B , \ B(x) 0.
910 xg((o o) U *.&-0 ) _ Xs(X) 1.
911 xg U{o—-0, «—0O) o0 ba o} _ Xx8(X) 0.
oio vr(o 0 as”x: -2.
915 X€ o-H-u_L_.o A u,vg{A,B,ba} — X8(x) 0.
A B
914 xg(c(™)) U O X8(x) 0.
A B
B
915 xg c("> —*  X8(x) 1.
A
TEOREM 916
Zio-t-@ ~ As(z) = XQx) + Xg(y).

Dokaz
(1) x,ygG & WxriVy = {k} & ExflEy =0 A z = xy

1,D186,D189,7888 >----
(2) c(z) =c(x) + c(y) A v(z) =v(x) +v(y) -1 A
CQz) = Ca(x) + Caly) A Cb(z) = Cb(x) + Cb(y)

1,2,D284,T778 T916
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PRIMJERI
ba
427 xe<< — X8(x) =-1-1=-2
ba
ba
428 xe > X8(x) =-1-1-1* -3

429 xeo—a—b-oib—o—aloib—o—# X8(x) =-1 - 1-1-1-=-4.

A B ba

430 xe —* X8(x) = 0+1+0-1! =0
A ba

D284,T777,T781,D189tT886 >----

TEOREM 917

ZE@ O ) —p» XO(z) = Xs(x) + Xf(y) - 1.

PRIMJERI

431 x€(0 0) —» XS(X) = 0+0-1-=-1.
ba

432 x6(d™~"~)d o 0) —* X8(x) =-1 - 1- 1 =-3.
B B

433 X6 (<0) crr>) —* X8(x) = 1+1-1=1.
A A

D245,7T916,T915 >---*

TEOREM 918
B

y« (xH Q > —m  *g(y) = XO0(x) + 1.
A

D222,7916,T908

TEOREM 919
ba

YE€(X Xfl(y) = Xs(x) - 1
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TEOREM 920

V Ssurjekc(G,N)#
Dokaz

(1) V Sfunkc(O'N)-

(2) H1 = {n: neN*A (3xeG)(Xfl(x) = n)}. Def.
(3) Oen 2,T907
(4) nenH” Sup.
(5) (3x€0)(X8(x) =n) 4,2

(6) neH™ -» (n+l)€H1 4,5,T918
(7) HL =N+ 2,3,6
(8) H ={n:neN* A (3X€G)(XQX) = -n)} Def.
(9) neH2 -» (Nn+)€H2 8,T919
(10) H2 =N+ 8,2,3,9
2,7,8,10 >----T920.

D284, D189, D280-D283 >—

TEORM 921

(VxeG)(Xs(x) = y(x) - eba(x) " “ Rb(x)).

DEFINICIJA 285
(Vixje2G)(h(ixJd) = h(q(ixj))).

TEOREM 922
zeicg);k X (z) = X (X)+X (y)+h(ixk)+h(iyk)-h(izk).

Dokaz
(1) x,yec & vxnv =(i,k} & ik E, |’1Eyso A
z=xy & q(ixk)=qg(iyk)=ba Supk

1,D284,D189,T783,D282,D283,D275,D277,T869,T221 >--

(2) XQz) = e(x)*+ e(y)-(v(x)+v(y)-2kl-(Ca(x)+Ca(y)+1)-
-(Cb(x)+Cb(y)+1) A q(izk) = ba

1,2,D0284,D285,T256 ------

(3) Xg(z) = X8(x)+X8(y)-1 A h(ixk)=h(iyk)=h(izk) = -1

1,3,T779 5----

(4) (Z€ik A q(ixk) = q(iyk) = ba) —»
€ Xg(2)=Xg(X)+Xjgly)+h (ixk)+h (iyk)-h (izk) «



D284,T779,D189,7T783,D0282,D283,D275,D277,T869,T221,D285,T256
(analog 4) >--—--

(5) (zei:%:k & q(ixk), q(iyk)e{ab,A,B}) -*=m

Xs(z) = As(x) + XQy) + h(ixk) + h(lyk) - h(izk).

4,5»T38,T3 >----T922.

PRIMJERI
A
434 xe S © .  As(x) 0+0 +0 +0 + 0 = 0.
9
B
435 x€ - XB(x) O+0 +0 +0+ 1 = 1*
< 9
ab
436 X6 . As(X) 1-1 +1 +1-1 =-1.
< 9
ba
437 X€ -» As(Xx) O+0-1-1+1=-1.
4.8. i-P ROSTORI

DEFINICIJA 286
. o xg(x)
(VXE€G)(VI, JeV )U (ix])) =Q8 qgs(ixj))

D286,D270,7T857,T920,T229 >
TEOREM 923

surjeke (2G,M).

D286,7T923,1T832,D0262 >--—--
TEOREM 924

(Yx«G)(«x = {((i,3)>y): & 9(ixJd) =vy}).

217
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PRIMJERI
b B
A A

1, T911»T9155T9161T917 >
(2) As(x) =1

1,2,0286,7T924,T866-T869,K7 >--—-
»X 1 2 3 4 5 6

1 BA ABA ABA ABA ABAB ABAB
2 ABA BA BA BA BAB  ABAB
3 ABA BA BA BA BAB  ABAB
4 ABA BA BA BA BAB  ABAB
5 ABAB BAB BAB BAB BA ABAB
6 ABAB ABAB ABAB ABAB ABAB BA

1,7911,T917 >~
(2) AO(x) = -1

1,2,D0286,T924,T866-T869, K7

wX L 2 3 4

1 DbABa aBa ab ab

2 aBa bABa ab ab

3 ab ab bABa bABa

4 ab ab bABa bABa
TEOREM 925

(vFe{i><J,q,98,gp,h})(Yixj€2a)(F (*(ix])) F(ixj)).

Dokaz
(1) ixj€2G Sup.
. A)
(2) aq($(ixj)) =aQ 8 gs(ixj)) 1,D286
(3) ixje20 —=* qg((™(ix])) = qg(ixj). 1,2,778,D270,T221

3,T217,7256,D267-D271,D285 >---- T925.
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DEFINICIJA 287
(VFE{Js,Ip,As,Xp, X} (YiXj€20)(F(ixj) = FU(ixj))).

DEFINICIJA 288
(VF€{r,<8,<p,<})(Yixj,kym€20)(Ixj F kym «—» $(ixj) F $(kym)).

D286,D287,D49 >----
TEOREM 926
(Vixj€2G)(X8(IxJ) = XO(x)).

D287,T850,T354,T926 >----
TEOREM 927
(VXEG)(Vi,k€VX)U (ixk) = #(kxi)).

D286,T859,T863-T867»T907-T911- >—
TEOREMI 928-931

928 xci —a <Kixi) = ba.

ba

1
c

929 » (I X 1)

930 xe (i & (ixk) ab.

931 —  a(Ilxk)

1
£

T868,T733»T75»T137
TEOREM 932

Z€EO ~ 0 (YIEVX)(VMEVY )($(izm) = d(Ixk) $(kym)>

TEOREM 933

zeic(g):k $(izk) = $(ixk) * $(iyk)«

Dokaz

(1) z€l %’k Sup«

(2) gpU(izk)) * gp(Mixk) ~ gp(*(iyk)) 1,T869,T985
(3) X8(z)+h(izk) m X8(x)+h(ixk)+X8(y)+h(iyk) 1,T922
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(4) Xs($(izk))+h(<Kizk)) =
=xs (d (ixk))+h U (ixk))+XsU (iyk))+h U (iyk)) 3,7925
(5) Xp(d(izk) = Ap(d(ixk)) + XpU (iyk)) 4,T923,D55
1,2,5,T226,T238 >----T933.

T929-T933,D223-D257 >----
TEOREMI 934-945

u
934(ye 0 * / & 1€VX) $(iyk) = $(ixk) w (u * ba).
935(ye (x)-&-"-8 & I1€VX) $(Giym) = d(ixk) ~ u#

936 X€i—c/N $(ixk) = u ™ (v ™ ba),

937 xe(l-~-0 fc) d(ixk) su v ab.

938 x€(4-"~o-"-S) #(ixk) =u ™ v.

939 yc( M » $(iyk) = d(ixk) & u.

940 xeic(™"M)k E(ixk) =u ™M v e

941(y€E o ~ ® *  jeVX) d(iym) = d(ixk) ™ (u ™ v).

942 zeiug)»"—“—ﬂ —» $(izm) = ($(ixk) ~ $(iyk)) ~ u.

943 wei —  $(iwm) #(ixm) ™ ($(iyk) ™ d(kzm)).

k
944(ze iba & eV, & n€v¥) —» $(izn) $(ixk) ~ #(myn).
m

1o @) ok
945 ze baba » —» $(izn)

n>¥°n

$(ixk) * #(myn)*
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PRIMJERI
, ba
440 X€lo #(ixi) = ba * ba = bABa*
./ A -
441 X€ich $(ixi) = (A ~ ba) ~ (A ™ ba) = ba*
"B
442 xe -»  $(ixk)
B B A
443 xeicCNr>C/Nr>CIND™ —» <Kixk) = BA~BA N (A M A) = ABABA
444 x«(& ab o ab o abri U (i O $(ixk)
= ab N ab ™~ ab = aBABAb.
B ,m
445 X€ ba A pa~ B ba $(ixn)=%(kxm)=d(kxn)=d(ixm)=BAB.
. — 0= 0—
11 n
TEOREM 946
i- ba .,k
yE \p(Ixk) = As(y).-
Dokaz
Sup*
(2) $(iyk) = $(ixk) " ba 1, D233,T933,T931
A (ixk)
@A) X8(y) = *8(ba « Q p agp (ixk)) 2, T923,T226
A (ixk)
(4) AO(y) = Afl(Q p ba) 3, T125,T217

1,41T72331T227»T209 T946.
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TEOREM 947
; ba
y€ (x)"o -» Xp(ixi) = XQy) = X(x) - 1.
Dokaz
ba

@1/ sup.

1,T919,T923,D55 >-—-
(2) X8(y) = X8(x)-1 & Xp(d(ixi)) = XO($(ixi))+h (#(ixi))

1,2,D287,T925]T923,T859,T797,T254 5---- T947.

T946,T805,T947,T921 >---T948,T949.
TEOREM 948

ye @@ba Xp(ixK)

TEOREM 949
(VxeG)(YiEVX)(Xp(ix i)

v(x) - eba(x) - 2 - Rft(ly) - Rb(y).

v(x) - ebQ(x) - 2 - Rfi(x) - Rb(x)).

D284,7T948,7949,7283 >----T950,T951.
TEOREM 950

ye Qﬁba X (ixk)

TEOREM 951
(YXEG)(VIEVX) (X (ix1)

e(x)-€ba(x)-Ca(x)-Ch(x)-Ra(y)-Rb(y).

e(x)-eba(x)-Ca(x)-Cb(x)-Ra(x)-Rb(x)).

D263,D286,D284 >—
TEOREM 952
(VXEG)(VJEYX)(VKEV W x)(xJ*k =y -» (VieVx)($(ixj) = $(iyk)).



TEOREM 953

(FeSznke (20.M)  ft ((x €l-y-S F(ixk) = u)

u
F(ixi) = u * ba)

*ab
(ye(@iab U Gyier ) -» p Fy)

(zeicg — (VieV )(VmeV )(F(izm) = F(ixk) ~ F(kym))

(zeic(g):k — F(izk) = F(ixk) F(iyk))

(xeG & 1,3¢V, —» q(F(ixj) =q(ixj)))

Dokaz

(1) (i) F€Sfunkc(2G»M)
(ii) x€l-~-1  -» F(ixk) =u

(iii) XeEi<// —» F(ixi) =u ba
i , ab

(iv) ye(@Jab U ©-~° ) F =F

(v) zc-g))):k (VicV ) (VmeV ) (F(izm)

(x)
(vi) zeio 0
‘*

(vii)(xeG & i»j€VX)

1(iv)iT797 >—
*ab

(2) (X0 & ye (X)-"c ) — Fx =Fy

2 1(iii) >
P,

(3) xe ) -> F(ixi) = ab ~ ba = ba.

F(izk) = F(ixk) ~ F(iyk)

q(F(ixj)) = q(ix]).

&

= F(ixk) w F(kym))

223

&
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I(v),T803,I(ii) =
(4) yg (X}& ba 9 —» (VigVx)(F(iym) = F(ixk) ”~ ba)
4,T145,T803 >—

(5) yg(x)-&-~-# -» F(kym) = F(kxk)

I(iv) b

(6) yg (\4S—a1? & zeim —» F(kym) = F(kzm)
6,1(vi) >

(7) ye (X)-& ba 2 —» (Yi€Vx)(F(kym) = ba ~ (F(ixk) ~ ab))

7,5,T192 5----
(8) (VxgG)(Vikgy )(F(kxk) = JQF(ixk) = F(ixi))

(9) (VxeG)(Yi,k,m,ngVx)(JIs(F(ixk) = Js(F(mxn))
9,T243 >-—-
(10) (rxgG) (Vi ,k,m,ngVx)(Xg(F(ixk) = XQ(F(mxn)))

(11) (VxeG) (VngN)(f(x)=n <—» (5Ti, jgVX) (XQF (ix]) =n))e

(12) (VXEG)(Yi,jEYX)(f(x) = Xa(F (I1xj))).

10,1 (vi), T850,T854 -—-—
(13) <VXEG)(Vi,jEVX)U 8(F (ixj)) = Xs(F(jxi)) &
as(F (ixj)) = qfl(F(JIxi))).

13,1 (i), T225 >--
(14) (VXEG)(VI,jEVX)(F (ixj) = F(jxi)).

12,1(v),T237 A--m-
(15) zg (x)—o—{y) -> f(z) =f(x) + f(y).

1(vi), T238 5----

(16) zgin(g)k Xp(F (izk)) = Xp(F(ixk)) + X (F(iyk)).

16,055 >---—-

(17) zgi%nk XO(F(izk)) + h(F(izk)) =

Xs(F(ixk)) + h(F(ixk)) + X(F(iyk)) + h(F(iyk))

Def
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17,12,1(vii),T256 >-—

(18) Zz€i c(%uk f(z) f(x)+f(y)+h(ixk)+h(iyk)-h(izk).

I(iv),12,T803 >----
(19) y«(® & & ze®-~o-ab fe -» f(z) =f(y)e

19,T795,1(v),D186,D188,D189 >--—--
(20) ye((x) S) —» e(y)=e(x) & v(y)=v(x)+l & f(y)=1f(x)-I.
D186,D188,0189,18,12,1 (ii),D285,T805,T861 >--—-

i
(21) ye@Ju & u€E{ba, AB} -» £(y)=£X)+l & v(y)=v(X) &

k f(y)=f(x)+f(u)+h(ixk)+h(u)-h(iyk)
21,7T922,12,I(ii) 2---

(22) ye®Qu & u€{ba,A,B} —»e(y)=e(xX)+l &
Kk fly)=1(x)-XQx)+X8(y).

15,1(iii),T797,0189,12 >-—-

(23) yE (*)-</" & u€{ba,A,B} —» £(y)=e(xX)+l &
f(y)=f(x)+X8(u « ba)

23,7T908,T909,T916 >--—-—-

(24) y€ (x></ & U€{ba,A,B) —» £(y)=£(X)+] &
f(y)=1(x)-As(x)-»-A8(y).

(25) H* = {n: N™Npoz & ((xeG & e(x)=0 & v(xX)=n) —».

f(x) =1-v(x))} Def.
25,12,3,T746 >
(26) leHj

25»20,T795 >—

(27) nen~ -* (ntDeH™

25,26,27 >----

(28) (VxeG)(e(x) =0 -> f(x) = 1l-v(x))
28,D284,D189,7T882,T883 >---—-
(29)(VxEG)(£(x) =0 f(x) = As(x)).
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TEOREM 954

d(jxk))

<s d(ix]j)

(VXEG) (Vi , j,kEVxX)(d (ixk)
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(VI,JEVX) ($(ix])

=Yy

(VX6G)(YyeM)(6(x)
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DEFINICIJA 289
(3k,m6V ) (y
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PRIMJERI

446 xe o 6(x) = ba.

447 x€(0 ---o0 U (o 0)) 8(x) = ab.
B

448 x€ O 6(x) = BA.
A

449 xe 0—o0—0 6(x) - AB.
yba ba

450 xe( / U<0>> 6(x) = bABa.

ba

451 (o ab o-g®-o0 U (0 o o)) 6(x) = aBAb.

452 6(x) = BABA.
B B B

455 x€(c<N> crpa””o) 6(x) = ABAB.

DEFINICIJA 290
(VX€G)(VF(gs,Xs,J8,qp,Ap,Jdp,q,l.a,h, X})(F(x) =F(6(x)).

TEOEEM 956
(VX6G)(V1,j«<Vx)(Je(Ixd) = JIs(x)).

D o k a z

(1) x€G & i,jEVX
D289,D287,T925 >--—-

(2) Xg(6(x)) = Xs(ix])
2,D287,T244 >

(5) Jg(6(x)) = Is(e(ix]))
1,5,D0287,D290 >----T956.

T956,7244,D286,T859 >--——-
TEOREM 957

X (X)
(VXEG) (VI €V, )U (ixi) = J¢(x) = Q ba).
D289,T925 >—--
TEOREM 958

6essu rekc (G.M).
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4.10. TRANSFORMACIJE mM-GRAFA UZ mPROSTOR KAO INVARIJANTU
TRANSFORMACIJE

4.10.1. KONGRUENTNOST  mGRAFOVA MODULO  JEDAN

DEFINICIJA 291
G = {X: X CG).

DEFINICIJA 292

(VX,YENG)(X OX Y ((YXEX)(?YE€Y) (VyeY) (7x<=X)) (gx = qy) V
X =0 & Y =0)).

D292,D0291,T857,T858 >---

TEOREM 959

O-ELCS

rel.ekv. (no).

PRIMJERI

454 o-~-0-~-0 O (o o o).

B A
455 O O I
456 0X S-A-8 {i kb = {m,n}.
D292 5o
TECREM 960

(Vx,y€G)({x) 01 {y} > gx = qy).

TECREM 961
(Z€‘I%J & Ixj r iyj) (Vk,meVx)(gq(kzm) = qgq(kxm)).
D o k a z
(1) x,y«0O & VxnVy=(i>" & & ExnEy=0 ft z=xy ft
ixj riyj & (Bk,m€Vx) (-1 glkzm) = q(kxm)). Sup.

1, D292,K8,7T840,T842,T847,7T848,(T023,T024) >—

(2) (I(ixj)=a & I(iyj)=b) v (d(ixj)=b & df(iyj)=a)
2, T183*T159-T161 >—

(3) -i(ixj r iyj)

»3»T779 >— T961.
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TEOREM 962

(weij & (BkeVx)(jxk r iyj)) -»

(Vm,n€Vx)(g(mwn) = q(m(xy™*k)n)).
Dokaz
(1) x,yeG & Vxnvy={i,j} & itJ & EXnEy=0 & w=xy &
BKEVX)(jxk r 1yj) & z=xy">k & (3m,neVx) (-\ g(mwn)=qg(mzn)) Sup.
1, D292,T840,T842,T847,T848,(T023,T024) 5--
(2) n(q(iwj) =aq(izj)) v -i(q(iwk) =q(izk))
2, D291 >--

d(izj)) v
d(izk)).

(3)(nl(iwj) =1(izj) v -id(iwj)
(*-il(iwk) = I(izk) v -jd(iwk)

1.3, T840,T842 >—

(4) I(iyj) =b v d(iyj) = a
1.4, T840,T842 >—

(5) (I(iwj)=b & I(izk)=b) v (d(iwj)=a & d(izk)=a).
3,5 >-—

(6) (I(izj)=a v I(iwk)=a) v (d(izj)=b v d(iwk)=b).
6.5, T855,T856 >--

(7) (I(jzk)=a v I(jwk)=a) v (d(jzk)=b v (d(jwk)=b)
7,7840,T842,T847,T848 >---

(8) I(jxk)=a v d(jxk)=b

8,4,7183,T159 >

(9) —+(ixk r iyj)

1,9,T779 >----T962.

D292, T778,T777,7T840,T842,T847,T848 >-—-
TEOREM 963

ZE(O—0—@ U (0 ®)) (Vi,keVx) (q(izk) =q(ixk)).
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4.10.2. KONGRUENTNOST mGRAFOA MODULO  NULA

DEFINICIJA 293 .

(YX,YenG)(X 0 Y > (<P (FyeY) & (WEY) (FxeX)) (A =s ) V
X =0 & Y =0)). Y

D293,D0291,T923,7924 >

TEOREM 964

06Srel.ekv.(nG)#

T964,D291 >---
TEOREM 965
GOG & 0O0O0O.

D293»D291 ------
TEOREM 966
(Vx,y€6)({x} 0 {y} > S = $y).

D293,D286,7924,7T858,D292 >
TEOREM 967
(VX,YEriG)(X 0 Y X Y &

1967 T858.D186 > ((YXEX) OY€Y)&(YYEY) (Sx«X)) (X8(x)=Xa(y)))).

TEOREM 968
(vx,YenG)(x Oy —p»((VXEX)(ffyEY) & (YYEY)OXE€X) )(v(X) = v(y)))

T967,D292,T744 >—
TEOREM 969
(Vx,y,Z€G) (({x}8{y} & EYIIE =0 & E flE,= 0) {xz}0{yz}).

TEOREM 970

(x*Jab 0 {x}.

D o k a z )
|

) ye®3ab Sup.
K

1,T805,T865,T869,T961,D292 >----

(2) {y} Q {x} & h(iyk) = h(ixk)

1,T922,T910,T256 >----

(3) Xs(y) = X_(x) - 1+ h(ixk) + 1 - h(iyk)
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3,2
(4) ~s(y) = XQx)
1,2,4,T967 >---T970.

T797,T963,T907,T916,T967 >

TEOREM 971
ab

(x)-o 0 {x}.

T803,T795,T970 ---—---
TEOREM 972
0i-?M e (0 S)

T972,T964,T803,T777,T778 >—
TECREM 973

(""jiab = {w: we(z)— (y) & zeO1-"-1]
®~~"k 0i-2TL&0 9 (0 ®) .

PRIMJERI
ab
457 o-ba™ 0 ;
a
a
458 (0 o0 o) e o3P :
a
ab
A ab B

459 (0—e 0-"-0) )

T967,T779,P263,T922,T961
TEOREM 974

(%)
(ZE€Ei<~>] & KkeV\V )

TyJ z
(Vm,neV )(d(mzn) = $(mXx( (yi~c) ™ ) k*™Mn)

PRIMJER 460

( XeB B & yeB A) 9 (ixj)
1 H> i ~E°

]
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D293, T809,T932,T933,T930,T124,T125

TEOREM 975
0 vV I U,
PRIMJER 461
B ,ba
(1) X = (ic™r~V o~-—0 —ok) Sup.
A
1,T970

/B* /ba
(2)X0i0 ab o~y B ook

2.D293,7932,T933,T929 >---—
(3) xeX —» $(ixk) = (B ~ A) ~ (ba ~ ba) ~ ab ~ A~ B = aBAb.

PRIMJER _462
|
O ——-- s . > s
B A_? eB A? Y
OB AL £ vy-"i.A BK XX 7- 3FA 0
B A B AJ N
6-——«— & - m----- 4 !

1,T974,T975,T969 >--—
(2) (xeX & vyeY -> d(ixk) = $(iyk)) & Y 0 Z

2.1, D293 >--

(3) S(ixk) = &(izk)

3.1, T932,T933 >--

(4) S(ixk) = (A ~B~AB) ~ (A~ ((A~B) ~ (A~B)) = ABABAB.

T967,T797iT778,T963,T909,T916 >-
TEOREM 976

(xy< 0 Q {x}.
PRIMJER 463

7ab /A /B
0O o+r—o0—+r—0.
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T967,T778,T963,T916,T952 >--—-

TEOREM 977
ze@-&-(y) (VJ,k,meVx)($(kzm) = ~(k(xyi”™)m))
PRIMJER 464
B
(xei%n & yei g —om) —» $(ixm) = $(iym)
A
TEOREM 978

(w€ij a (3keV )(jxk r iyj)) -»

(Vm,néVx)(d(mwn) = d(m(xy™*k)n)).

Dokaz

(1) x,yeG 4 V;Il'nvy:{i,,)} 4 i=] 4 EXOEy:O 4 w=xy 4
(SKEVX)(jxk r i1yj]) & z=xy™">k & -i Xs(w)=XQz) Sup.

1,T922 ---—--

(2) +(XO(x) + Xs(y) + h(ixj) + h(iyj) - h(iwj) =
= Xo(x) + X(Q(yJ*k) + h(ixk) + h(i(y**k)k) - h(izk)).
2,1,T952 >----
(3) A (h(ixj) - h(iwj) = h(ixk) - h(iwk))
3, T849-T856 3--
(4) (I(ixk)=a & I(iyj)=b) v (d(jxk)=b & df(iyj)=a)
4, T183 --—------—-
(5) -i (jxk r iyj)
1,5,T967,T962,T779 >----T978.

TEOREM 979
1. i 3 i, u J
g}zjv &
(ye e & ur v) = {y} o 0 .
Dokaz
i u _J

v
(1) yegk & UuUrv Sup.
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1,D255,7T933,T931,T177,T175 >
(2) Miyj) ru & VX:Vy

2,1,0288,T179 >--—--
(3) iyj rv
1,2,3,T931,T978 >— T979.

PRIMJERI

465

6 itd.
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T978,D288,T805,T931

TEOREM 980
. u J i u
(V€ a (3TEVX)(jxk r u)) — {y} 0 &x*f>

PRIMIER 467

A A A
A
A

T980,D288,T797

TEOREM 981
(YE( ixk r u) {y 0 o~/~n
&
PRIMJERI
, ba N 0-~-
48 ito 9 97 a "
A
B /B
469 0 e 0BO
v
ba ba .ba yba
470 o > 0
ba * \ba
ab
Z ab
471 bK_o b2 0  o-ro
T981,T183,T925,T976 >----
TEOREMI 982-985
982 (ye(x/\Jb & |(|Xk) = b) {y} 8 {X}

983 (XEG & (ai,keVX)(I(ixk) = b)) X} e



984 (YE(Xx"A & d(ixk) =a) —» {y} 0 {x}].

985 (xeG & (ai,k€Vx)(d(ixk) = a)) — {x} 0 (x"a

PRIMJERI
472 cN-~">-A_ o 0 o-I® o Ao
B
B
475 < S > 0
A ba k B am i. ba & B ¢
474 B Tb ba 0 ba
A /
r~ba p B n re ba t C
T978 >----
TEOREM 986
(z€lo(®>] ixj riyj) —  (Vm,neV )($(mzn) = 0(m(xyi”")
PRIMJER 475
A B A B A
(xei J yei k) $(mxn) = $(myn).
B A B AJE
T986 >----
TEOREM 987
i
ba & z =xkM) - {y} 0 0 -A-M-S
PRIMJER 476
ba

j/Hrg\m e v ,n .1c(3 )k
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T987,T828 >-—-
TEOREM 988

T986,T926,T911 >—
TEOREM 989

i
ye(xjjba -*» Xf(y) = Xs(x1>k).

PRIMJER 477
B

(X€ccN-0- — & yec(™N)>) —» XQx) = Xg(y).
A

T946,T989 >--—--

TEOREM 990

(VX€G)(Vi,KEV ) (-i i=k  -> Xn(ixk) = X U 1%¥)).

T990,T921,7836 >
TEOREM 991
(VXEG)(Vi,K6VX)(-i i=k -»

Xp(ixk) = v(x) - efea(x) - 2 - Ra(xi*k) - Rb(xi"Nc)).

T283,T991,D284 >
TEOREM 992
(VXEG)(Vi,k6VX)(n i=k ->

X(ixk) = e(x) - “CQx) “ Cb(x) ”

" RY(x™>K)).



4.11. 1ZOMORFIZAM mM-STRUKTURE | ALGEBRE KLASA OSTATAKA
m-DVOPOLA MODULO NULA

DEFINICIJA 294

(VXEG)(Vi,jeVX) ( |ixj] = {kym kyme2G & &kym) = d (ixj)}).
PRIMJERI

478 (xel-A_& B yer2 3 B, lixk] = Jmyn].
479 (xei & vye lixi] = |kym].

DEFINICIJA 295

2G0 = {X: ixke2G & X = ]ixk]}
DEFINICIJA 296
(VXe2GO)U(X) =y ixkeX & $(ixk) =vy).
PRIMJER 480
B k

X€ ADB $ |ixk] = ABAB.

D294-D296,T923 >--—--
TEOREM 995

*6SbiJekc(2G0' M)-

D294,T927 >-—-
TEOREM 994
(Vixke2G)( lixk] = [kxi]).

DEFINICIJA 297
(VXEM)(*"g(x) = Y Ye2G0 & $(Y) = x).

PRIMJER 481

xeio(?uk — d“J(BA) = [ixK].

DEFINICIJA 293
(VXE2G0)(V F€{l.d X A NJ)(F(X) = F(d(X)).
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PRIMJER 482

B
(xeio A "~k & X = |ixk]) 1X) = a &

dX) =b & X(X) =4 & X/(X) =2 & XOX) =1L

DEFINICIJA 299
(VX€2GO0)(VF€{q,93,9p,Js,Jp,Pd,P1,Q,D ,K,I})(F(X) - “O(FU(X)))

PRIMJERI

483 xe(i o & o0) & yeno— on - glixk] = |Jmyn].
B

484 x€ A A & ygk<~>n JOlixjl= |kym]e

B

485 xEio- <iB> B yei — DJixk] = |lyk]e

ba
486 xe: o §) — D|ixx|

B ~ - -
487 x€ k & yg(i o &) Klixk] = Jiyk]-e

yei@k k lixk] = [liyk].
a

489 XE&-N- & ye(d2E o) —» 1ixk| = liyk |
DEFINICIJA 300
(VX,Y€2Ge)(yF6{r,r,<s,<p,<,0n)(X F Y $(X) F $(Y))e

DEFINICIJA 301

Q2G0 = <*2G(A)’ *2G(B)» d2G(ba)» *?a(ab)>*
PRIMJERI

490 xei> -*m $20*ba* = 1Ix11*

491 xe (i 6) n2GMab ™ = lixk I*

492(xe&— & UE[ASbJ) -*e AG(u) = lixkl*



D256,T778,T803,D293,D294 >—
TECREM 995
(YX,Ye2GO0)(ff1z€2G8)(ixk6X & ik & myneY & mEn &

K
zegiba & Z = |izm|).
n

DEFINICIJA 302
(?X5Ye2GO0) (X MY = Z <—p» (ixkeX & ik & nynEY & mEn

:I gk

Z€ ba & Z

¥)o,
D257,T779,T803,D294,D295 >----

TECREM 996
(VX,Y62G0)(3!'z€2Ge)(ixkeX & myneY &

i k
z€ bai:gjba & 2 = |izn]).
m n

DEFINICIJA 303
(yX»>Ye2GO)X A Y = Z —» (ixk€X & myneY &

- § k
Z€ ba[gjba & Z lizn]))e
m n

T995,0301,7996,D303 >----
TEOREM 997
Fe{ ~ , M -» FESfunkc(2G0x2G0,2G0).

DEFINICIJA 304
~">G0 = "2G0» Q2G8> °

D301,D303,D256,D257»D294-D296,T778,T779,T803,T932,T933,T931

TEOREM 998
(VX,YE2GO)S(X A Y) = $(X) ~ $(Y) & $X " Y) = &X) « $(Y))
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4.12. m-G RAFOVI

4.12.1. INTERPRETACIJA DULJINE IMENA KANONSKOG nt-DVOPOLA
TERMINIMA  TEORIJE GRAFOVA #

DEFINICIJA 305

GV:{XZ x€G & *(x)=I & 1< v(x) a (VeeEx)(u)X(e)e {A,B})} -

PRIMJERI

493 UB{AjB} — o0-2-
B

494 5c ot.

405 XEO —» -1 (xEGt)
496 XE(0-0 0O—0)

D305,D188 >—
TEOREM 999
(VX€Gt) (e™b(x) = eba(x) = 0).

D305,D0189,D186,D273 >----
TEOREM 1000
xeGt —» 1 < e(x).

D305,D292,0293,D0189 (tot.Indukc.) >----
TEOREM 1001
(VX,yEGt)(ix] 01 2y] -» (x}ejyj).

D305,D0289,D0189,T309 (tot.Indukc.) >--
TEOREM 1002
(VXEGL ) (6(X)EMpoz) & (VXEMpoz)(3y€Gt)(6(y) = X).

D305,D284,D0279,7921,T999 >----

TEOREM 1003
(VxeGt)(Xs(x) = C(x)-Ca(x)-Cb(x) = R(x)-Ra(x)-Rb(x)).
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DEFINICIJA 306
2t = {ixj: X€O0t & i,J€VxX},

D306,T999,T991 >----
TEOREM 1004

(ixje2Gt & —+1=J) —» Xp(ixj) = v(x)-2-Ra(xi”™)-Rb(xi>"),

D306,7T999,T992 >----
TEOREM 1005
(ixje2Gt & -ii=J) —» X(ixj) = e(x)-Ca(x)-Cb(x)-Ra(xi”™)-

-Rb(x17).
T1005,T884 >----

TEOREM 1006
(VIXj€2Gt)(X (ixj) < e(x)).

TEOREM 1007
(YXEGE)(V I, JEVX)((£ (X) = €A(X) & -ii=j) —» $(ixj) = A).

Dokaz
(1) Ixj€2Gt & c(x) = AX) & —i=] Sup.

1,D188,D189,D278,D282,D0283,D304 >—--
(2) C(x) = Ca(x) & Cb(x) =0

1,2,D305,D284,D282,T999, T1000,D273, 7847, T848 >~
(3) Xg(x) =0 & q(ixj) =A

1,3»D286,T217 >---- T1007.

D305,D188,D0189,D278,D0282,D0283,0284,7999,T1000,D273,D286,T217
TEOREM 1008

(YXEGL)(Y I, jEVX)( (e(x) = Eg(x) & ~-ii=j) —» $(ixj) =B).
PRIMJER 497

i. A
xe A A $(ixj) = A & $(ixi) = ba.

DEFINICIJA 307
2Gtkan={i xj: ixje2Gt & (Skym€2Gt)U (ixj)=$(kym) -» e(x) < e(y))}.
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TEOREM 1009

(WEMpoz)(iixj€2&t)(d(ixJd) =y & Mixj) = e(xX) &
XQx) =C(xX) & Xo(ixj) =v(x) - 2).

Dokaz
T931,D189,D278,D305,D186
((x€1-~-i & ue{A,B}) d(ixk) =u & e(x) =1 = X(ixk) ft

X&(x) =0 =C(x) & >ﬁl(ixk) =v(x) -2=0.
1,T933,T134,D15,7288,7T281,D278,D0189,D186,T805,T922 >

2)(yEX B & I(ixk) = a) $(iyk) = P$(ixk) &

X(iyk) = X(ixk)+1 & XQy) = Xf(x)+1 & Xp(iyk) = Xp(ixk)
£(y) = e(x)+l ft C(y) =C(xX)+1 & v(y) = v(x).

1,7T932,T133,T288,D284,T281,D278 >----

P($(kxm)) &
Xp(kxm)+1 ft

(5)(yei—2~S—{x) & @BmEWx)(I(kxm) =Db) —» $(iym)
X(iym) = X(kxm)+l & Xg(y) = XQx) & Xp(iym)
c(y) = e(x)+tl & Cy) =C(x) & v(y) =v(x)+l

(4) H={n: (y&MpQXZ & X(y) =n) —» (5TIxk€20t)(d(ixk) =y ft
X(ixk) = c(x) & Xa(x) =C(x) & >ﬁo(ixk) = v(x) - 2)}, Def.

4,1 >---

(5) I€H

4,2,3 >---

(6) neH -» (n+l)eH
45,6 --—---

(7) H = Npo.-

4,7,T309 >----T10009.

TEOREM 1010
(YIXK€2Gt) (ixk6 2G°kan > X(ixk) = e(x)).

Dokaz
(1) ixk€2GNjcan & X(ixk) < c(x). Sup.

1,T1009,D307 >—
(2) @Imyn62GT)(N(myn) = d(Ixk) & X(myn) = e(y))
1,2 >—

(3) (Bmyn€2G™)(d(myn)

$(ixk) & e(y) < e(x))
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3,1,D307,T1006 >--
(4) (Vixk€2Gt)(ixk€2Gtkan —» X(ixk) = e(x)).

(5) (BTixk€2Gt)(X(ixk) = e(x) & -i (ixke2G™kan) . Sup.

(6) BTmMmyn€2Gt ) (d(myn) = $(ixk) & e(y) < e(x)) 5,D307
(7) (Pmyne2Gt) (e(y) < X(myn)) 5,6

(8) (Vixk€2Gt ) (X(ixk) = e(x) —» ixk€2Gtkan). 5,7,T1006

4,8 >---T1010.

PRIMJERI
i A U

498 x€(BB) — » ($(ixk)= ABABA & e(x) = 5) —»
Kk (X(ixk)=e(X)  —  jxke20tkan-

U(ixk)= BABABA & e(x) = 6) —»

(X(ixk)= e(x))  —*» ixke2Gtkan*
A _ A Kk
500 x€(Ei iB ) — » ($(ixk)= ABAB & e(x) =5) —»
i (X(ixk)= 4 + e(x))
(ixke2Gtka&n) -

TEOREM 1011
(Vixkec2Gt )(ixk€2G tlEan » ((Ca(x) =0 & Rgul» =0 &

(Cfe(x) =0 & Eb(xi,k =0))).
Dokaz
T1010,T992,T994,T7T884 >—-——-
(1) (ixke2Gt & 11 =k) -> (ixke2Gtkan

C (x)=0 & C_(x)=0 & Ro(xi>k)=0 & R_(xi"k)=0)).
T1010,7281,7859,T254 >---

(2)(VixI€2Gt)(ixI€2G tkan e(x) = 2Xs(x)).
2,T1003 5----
(3)(Vix1€2Gt)(ixI€2Gtkan » £(x) = C(X)+R(x)-CQ )-Cb(x)~

Ra(x)-Rfe(x)).
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3,D278,D279,T884 >--—-

(4)(Vixie2Gt)(ixI€2G tkan CQx) =0 & Cb(x) =0 &
Ra(x) =0 ft Rb(x) = 0)
1,4,T834 >----T1011.
PRIMJERI
A
501 xe AmA Ca(x) =1 m,kiVx) -,(ixk62Gtkan).
i A k

502 xe BB Bb(x1%k)= 1 n (ixks2Gtkan).

TEOREM 1012
(Tixke2Gt) (ixk€2Gbkan *—» Xfl(x) = C(x) & Xp(ixk) = v(x)- 2)*

Dokaz

T1011,71003i71004 >

(1) (Vixk€26t & -ii=k) -» (ixke2Gtkan Xs(x) = c(x) &
Xp(ixk) =v(x) - 2)).

71011,71003,7949 >
(2)(Vixie2Gt)(ix 1€ 2GtkQn XQ(x) = C(x) & Xp(ixi) = v(x)- 2)

1,2 >-—--T71012.

71012,0279,T836 -
TEOREM 1013

(ixke2Gt & n i=k) -»  (ixk€2Gtkan XFfI(x) = C(x) ft
Xp(ixk) = R(xi?"k)).

PRIMJERI

503 x € ——ok —» $(ixk) = A & XQ(x) =C(x) =0 &

Xp(ixk)= v(x) - 2=0 & X(ixk) = ¢c(x) = 1.

504 X€10 A—Q d(ixk) = ABABABAB &
X0(x) = C(x) =3 &
A Xp(ixk) - v(x) - 2=4 &

X (ixk) = e(x) =8



4.12.2. |IZOMOEFIZAM ALGEBRE KLASA OSTATAKA nt-DVOPOLA
MODULO NULA | nM.-STRUKTURE

DEFINICIJA 308
(Ixk€2Gt & i"k) —» |JixklM = {myn: myn€2& & mn ft

O(myn) = O(ixk)}

DEFINICIJA 309
2Gt0 = {X: ixk€2Gt & itk & X = [Jixk|t>.

DEFINICIJA 310

At = X «—» (xil-*-S & X = |Jixkll)e

DEFINICIJA 311

Bt = X * (x€1M-1 & X = |ixk1ll).

DEFINICIJA 312

(YX,YE2GtO)(X y =2 » iXkEX & myneY & -i ((O 0)=0)
Z = | I(xkM)(y)mlIt).

DEFINICIJA 313

(VX,YE2GL9)(X N Y = Z «—pixkeX & myneY & -i((0 ®))=0
Z = |i(xi™*n)(ynMc)nlt).

A3,T484-T486,D308-D313, T777,D263,T931-T933,T923 >—

TEOREM 1014
(SIFESMJekc(2GtO,Mt))(F(At) =A & F(Bt) =B &

(VX,Ye2GtO)(F(X " Y)

F(X) v, F(Y) &

F(X Y) F(X) « F(Y)))

247

ft
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4.13. n?”-G RAFOVI

4.13.1. INTERPRETACIJA m-TOPOLOGIJE -GRAFOVA TERMINIMA
TEORIJE GRAFOVA

DEFINICIJA 314
G = {x: xeG & (Ex =0 v (Ve*Ex)(ux(g)e {ba, ab}))}.

DEFINICIJA 315
2G? = {ixj: xgG? & 1i,jJ€VX).

PRIMJIER 505

ba ab
XEU{O,C/ ,/,o—-‘la—o.o—&o,(o 0), (0 o— o ),

D314,D189 >-—
TEOREM 1015
(VXEGA)(e(x) =

D314,D0275,0276,D273 >-—-
TEOREM 1016
(VxeG™) (xa(x) = *b(x) = *(*))e

T1016,D280,D281 >

TEOREM 1017
(VxeGM) (Rft(x) = Rfg(x) = *(x) - 1).

T1016,7T1015,D282,D283 >-—-
TEOREM 1018
(VxeGM) (CQ(x) = Cb(x) = C(x)).

T921,T1015,T1017,D278 >-—-

TEOREM 1019
(Vx€G} ) (-Xg(x) = C(x) + *(x) - 1).
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(VXEGA) (*(x) = 1 -> -Xg(x) = C(x)).

D314,T878,D278,D279 >---
TEOREM 1021
(VxeG)(e(x) =0 -» xeG* & *(x) =v(x) & C(x) =0 & R(x)=0).

T1021,T1019»T1017 ------
TEOREM 1022
(VXEG)(e(x) =0 —» -Xs(x) =v(x) - 1 = Rft(x) = Rb(x))

PRIMJERI
506 X6 0 —m Xfl(x) =-(1 - 1) = 0.
507 xe o0-"-0 —» X8(x) =-(1 - 1) =0.
ba ba
508 xe >< —> Aglx) = =(4 +1-1) =-4,
ba ba
o o ab
509 xe(( ) U abi iab ) = Ag(x) =-(0+4-1) =-3.
o o
—> Ag(x) =-(6+1- 1) =-6.

T947-T951,D278,T1015-T1020 >----
TEOREM 1023
(Vixk€2G?(n(x) =1 -» Xp(ixk) = Xfl(x) - 1 & X(ixk) 2Xs(x)).

T950,71015,71017,T1021,T1022 >

TEOREM 1024

(Vixk€2G) ((c(x) =0 & -ii=k) —» X (ixk) = Xg(x) +1 &
X (ixK) 2X p (ixk))
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T967,T1020»D278,T966 >

TEOREM 1025
(Vx,yeG™)U (x) =*(y) =1

¢ 0y =» V=V, & EX) = c()

PRIMJIER 511

ba ba ba ba ba ba
ba ba ba o 8 ( ba ( ba ( ba (
b W

T1025,D278,T1020,T966 >—
TEOREM 1026

Qix,J,kyme2G* Y(nG) = ny) =1
UCixg) = S(kym) CC =COMN

Tlo26 >
TEOREM 1027

xgG YING) =1 —» Vi, I k,meVx)@E(ix.)) = £(kym))).

T1022,T967 >—
TEOREM 1028

(X, ¥€6) (eC) = e() -0 —» (PG 9 fy} «™ V, =V )).
PRIMJERI

ba
512 xeio—22 b8, —s 8(ixi) = 8(ixk)

513(xeé 8§ & y€o——o0 & {x} 9{y}) —* V = {i K}

\
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4.13.2. 1ZOMOKFIZAM ALGEBRE KLASA OSTATAKA m?-DVOPOLA
MODULO JEDAN 1 ALGEBRE SUDOVA

DEFINICIJE 316-319

316 (VIxj€2G~ Hlizjlgj' = {myn: myn€2G~ & q(myn) = g (ixj)})
317  ,Gcei = (X: ixjc2G? & X = Jix]j Iy x

318 Tiom o T (XE10———0j & X = lixj]?1).

319 1i =X *» (x€10~— -0j & X = Jlixjl?1).

D316-D319,T861,D267,D268,T862 >—
TEOREMI  1029-1035

1029 T = {ixj: ixje2c™ & q(ixj) = ba}.

1030 1 = {ixj: ixj€2G? & q(ixj) ab}.

1031(ix,j€26 & *O) =1 - * Ix™Mn

1032 x€G™ — »  (Vi€Evx)(ixieTl).

1033(VX,yEGN) (z€( (X) (y) ) —» (VieVx)(VjeVM)(i X ).
1034 T1m 1 = 0.

1035 = 2G"N91.

DEFINICIJE 320-324
X,YE2G?01—»

320 -iXX =Y (ixjex & kymeY & VxIIW = 0 & q(ixj)= Dg(kym))

321 X &1Y

1
N

» (IXk€X & myn€Y & i1xk & n &
ZZQ-obacE(y) & Z* |1Izm]™ )

k
(ixXk€X & myneY & ZzE bat@ba
n

Z = Jizn ™). m

1
N

322 X VLY

323 X — A~ Y =("17 vj Y.

324 X «», Y = (X ->1Y) (Y X).
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D316-D324,D0269,D256,D257 >—

TEOREMI 1036-1040
1036 Ajeris = |-

e iai) “Tx

1037 X i Y =Ti «* (X =Tj A Y = Ti>

1038 X . v -4 — X= _ A y=i1)

1039x—*iY —4 X=T1 A Y:¢

1040 X <™ Y =T1 X =Y

PRIMJERI

514 (X€io—o0j A y€ko--om A VAV =0 A u€Qd) —»
S 1ixjl?l = kym|?l

515 x«(lo-~-o0 0D -—-» -— =Tj

tfi

516 (x6locT~>k

lixk|™ &1

517 (xcio—oj] & YyE€mo— -on &

Uxjla 11

Uxjla —~

« »

& y€(m on) & z«(*oC ~o-—"-0ll om))

Iryn 71

|myn|?1

| myni™n

lizm|?1 ==+1

ze(ba ba) & u,vEC?0)
.U-—o0
i~ v n
lizn|?1
4 9i
z€(bal Tbha)) —»
mo °n
lizn]?1.
u \

519 (xelo —--0f & ygmo-—-on & z€i<

lixj]?i

|myn|?1

|1zn]?1.

ba ear*>n A utve€Q0) — »
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D316-D324,D0256,D257,T1035-T1040,D98,T433 >---—-
TEOREM 1041

(2G?01, -ilf av vv vV **1 )€S$alg.sud.

4.13,3. [IZOMORFIZAM ALGEBRE KLASA OSTATAKA n?-DVOPOLA
MODULO NULA | STRUKTURE

DEFINICIJE 325-330
325 (Yixj€2GMN)(|Ixj|™ = {kym: kyme2G™ & $(kym) = $(ix]j)}).

326 2G?0 = {X: Ixj€2G? & X * |ixjL}.
327 (ba)? = X «—p (X6 4-52-S & X = |ixk().
Qg (ab)? = X <he (X1 -<s_s & X = |Ixk|?).

329 (TX,Yi2G?9)(X A~ Y = Z <> (ixk€X & i"k & mynEY ft

mn ft z€ (x)—& ba &H{y) * Z = |lzm]|?™)).
330 (VX,YE2G?0)(X « Y =Z (ixk€X ft myneY ft
L,blr® -21a * Z« |Izn]™)).
mMm @ 4n

D325-D330,D256,D257,T923,T932,T933,099,T462 5----
TEOREM 1042

(RIFESb1Jekc(2G?0,M?))(F ((ba)?) = ba & F((ab)?)=ab fit

(VX,[€2G20)(F(X ~ Y) = F(X) wF(Y) ft

FOX " Y) = F(X) « F(Y)).
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4.13.4. INTERPRETACIJA RIJECI

D204-D207,D29,T809,T814,D247,D0248,7925,T861,T868,T869

TABLICA KORESPODENCIJE FUNKCIJA ALGEBRE SUDOVA
mM™-DVOPOLA OBUHVACENIH RIJECJU  m-TOPOLOGIJE

10.

11.

ALGEBRE SUDOVA

FUNKCIJA ALGEBRE SUDOVA

Konstanta: T.
Konstanta: *.

Identicnost: F(u) = u.

Negacija: F(u) * -i u.

Konjukcija:
Fluw) = (u & w).

DisjunkciJda:
Fu,w) » (u v w).

Implikacija:
Flu,w) = (u —»w)e

Ekvivalencija:
F(u,w) = (u <—p»w).

Ekskluzivhna dI8junkcija:
F(u,w) = (U *+» w)e

Shefferova operacija:
Fluw) = (u [ w)e

Lukasiewiczeva operacija:
Fluw) = (u Jw)e

mM-TOPOLOGIJE FUNKCIJAMA

LIUSKE

FUNKCIJA LIJUSKE nf-DVOPOLA

XE
M s-i

u

W

g(ixk)
ba

ab

ba
ab

ab
ba

ba
ab
ab
ab

ba
ba
ba
ab

ba
ab
ba
ba

ba
ab
ab
ba

ab
ba
ba
ab

ab
ba
ba
ba

ab
ab
ab
ba



Peti dio

ELEKTRICKE MREZE | m-BROJEVI

5.1. UVOPENJE SIMBOLA ZA OSNOWE TERMINE TEORIJE
ELEKTRICKIH MREZA

Citat 5
"The main purpoee of this chapter is to provide a rigorous mathe-

matical foundation for the discipline of electrical network theo-
ry, justifying many of the familiar statements and procedures of
network analysis.A general familiarity with network analysis, in-
cluding the Laplace transformation technique, is assumed in this
chapter,Therefore no time is devoted to the "physical aspects” or
to the relationships to the other disciplines, e.g., the equatio-
ns of Maxwell and those of Lagrange.

6-1. Kirchhoff's laws. Since the purpose here is to "prove" some
properties of Kirchhoff's current and voltage equations,it is ne-
cessarv to begin with a precise(postulational)formulation of Kir-
chhoff*s laws. A very brief discussion of the concept of a refe-
rence is given first, to allow for the correlation of the present
formulation with the conventional ones.

Electrical network theory is formulated in terms of two varia-
bles, current and voltage, associated with each network element
(branch, in conventional terminology)s As is any other physical
Science, these quantities are correlated with the reading of cer-
tain instrumenta, which in this case are called ammeters and vol-
tmeters.Since our discussion here is concerned with current and
voltage as real function of time, i(t) and v(t),the meters should
be of the "instantaneous-value"” kind. They might be centerzero
D'Arsonval meters or oscilloscopes, for instance.As is well known
the sign of the reading depends on the way in which the instrume-
Nt is connected in the networkj reversing the terminale changes
the reading from positive to negative or vice versa™Hence, for u-
nlgue correlation of theory with experiment, it is necessary to
specify, on the network diagram, how these quantitiee are to be
measured. Such a speciflcation is done by means of current and
voltage references.

Definition 6-1.Electrical network. An electrical network is a di-
rected linear graph with two real-valued functions v and i of the
real variable t, which are of bounded variation, associated with
each edge, satisfying the three postulates Np”~i and N below.

255
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Postulate N» Kirchhoff's current law:

Aai(t) =0, (6-5)
where Ag is the vertex matrix of the directed graph
i1(t)
i 2(t)
i(t) = (6-6)
LVv~d

and ij(t) Is assoclated wlth edge j.

Postulate Ng Kirchhoff's voltage law:

where Ba io the Circuit matrix of the directed graph
vi(t)
v2(t)
v (t) (6-8)

and v~ (t) is assoclated with edge j.

Since the properties of incidence and Circuit matrices are known,
it suffices to restate these results as properties of Kirchhoff's
current and voltage equations.

6-5 The third postulate. Postulates and N« are concerned only
with the way in which the network elementa are interconnected.
The character of the network elementa (resistor,inductor,capaci-
tor,generator,etc.) does not enter the discussion of Kirchhoff' s
laws in any way. Kirchhoff's laws are assoclated purely with the
topology of the network* Y,
On the other hand, the character of the individual network ele-
ment(whether it is a resistor or inductor or generator)is clear-
ly independent of where in the network the element happens to be
located.The network element is characterized by the relationship
between voltage and current. Postulate N, concerns this relation-
ship. The Independence of the two aspectB of a network (the geo-
matry,or interconnection aspect,and the character of the network
elementa) must be clearly borne in mind.

The functions assoclated with each element of a network, in ad-
dition to satisfying Kirchhoff's laws, are required to satisfy a
system of]Integrodifferential equationsr»These element equations
have the general form

v(t) = j«ifr> ¢ Ri(t) + I(x)dx + e(t) + vc(0+). (6-55)
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The entries in the matrices L, R, and D characterize the equat-
ions and the network.
(a) If the matrices are symmetric, the network is bilateral,or
reciprocal; otherwise it is nonreciprocal.
(b) Tf the entries in the matrices L, R, and D are independent
of the dependent variables V. , and ij , then network is 1li-

near; otherwise it is nonlinear.

(c) If the entries in the matrices L,R, and D are functions of
the independent variables t, but not of ij and v. , the ne-
twork is linear time-variable network.

(d) If the matrices L, R, and D are positive semidefinite or
definite, and if e(t) = 0, the network id passive.

(e) If the matrices R, L, and D contain only constants, the
network is linear time-invariant.

The general principles of the discussions in this chapter are
applicable to ali linear time-invariant networks. The discussi-
ons up to this point are applicable to ali lumped networks. How-
ever, for the major theorems in the rest of this chapter, a lin-
ear, reciprocal, time-invariant network with positive semidefin-
ite matrices is assumed.The reason for this restriction is given
by means of an example at the end of Section 6-4.The type of ne-
twork to be considered is characterized by the third postulate.

Postulate N”~. The functions v(t) and i(t) are related by

v(t) = L [7i(t) + Ri(t) + D'i(x)ax + vc(0) + e(t), (6-56)

where R and D are real diago°nal matrices with nonnegative en-
tries on the main diagonal, and L is real symmetric, with the
nonzero rows and columns of L constituting a positive definite

submatrix.
(Linear graphs and electrical networks,1961, str. 117 - 128).

KONVENCIJA 8

Termini "pasivna elektricka mreza, grana (edge) i CvoriSte (ver-
tex)T, u definicijama 551 i 552 imaju znacCenje koje proizlazi iz
konteksta citata 5.

DEFINICIJA 551
Sei rare2a = fx: X je pasivna elektricka mreza }.

DEFINICIJA 552
(VxgSel mrega )((VE je skup Cvorista u x) & (E™ je skup grana u
X & (1% je funkcija incidencije u x)).

DEFINICIJA 555
N = {(x1,x2,x7): Xi«sei.mreza & x2eSinJekc(Vx'V)

x3eSinjekc(Ei>E) >'
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DEFINICIJA 334
(VxeN) (Fmrg~a(x) Xi

Fime grane(x) x3'

DEFINICIJA 335
(VX*N)(Vx - Adom(FIme

DEFINICIJA 336

(VXBN )(IX = {(e,{i,k}):

Fime grane(y)"® 6

‘~ X

*  Fime cvorista(x) “ x2 &

(XX, X2,Xx3™ #

SvorlSta(x) & Ex = Adom(Fime grane<*)»e

eeEx a i,k<=vx & ((Fmreca(x) =y &

*  Fime C¢vorista(y)™; * *

Fime zvoriata(y)<k) = k’> - *;<e’> = h_k>»-
DEFINICIJA 337

(VxeN)(Vi,keVx)(ixk = (x,(i,k))).

DEFINICIJA 338

2N = {z: xeN a 1i,keVx & 1z = ixk}.

Citat 6

"Definition 6-4.Driving-point impedance and driving-point admit-

tance.
pendent) generatore,
ted as Input vertices.

Let N be an electrical network not containing any (inde-
and let two vertices(l,1*)of N be designa-

Then the ratio of the transform of v, (t)

to the transform of i11(t),with references as shown in Fig. 6-10,

tj?dler)zero initial conditions, is the drivin%—point impedance at
,1>):
g—_l-L———ol
V1(s)
Zd(s) « TTsT (6-110) vy
ali initial conditions zero | 01’
Fig.6-10

The reciprocal of Z~is)

I'1(s)
= vArsT )
ali

Yd(s)

initial
(It may happen that for the given v,(t)there

is the driving-point admittance:

(6- 111)
conditions zero
is no solution

-, (t)

under zero Initial conditions.The definition refers merely to”the

forma! procedure)".(Seshu-Reed,Linear Graphs and Electrical

works,1961,str.149)

net-
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KONVENCIJA 9

Termini "impedancija od x u (1,1*)" (driving-point Impedance at
(1»1*)» resp."admitancija od x u (1,1*)" (driving-point admitta-
nce at (1,1*)) u definiciji 339» reap. 340 imaju znaCenje iz de-
finicije 6-4 u citatu 6.

DEFINICIJA 339
s> - (Vixke2N) (Z(ixK) = (As)(2) resa () =% &

z je impedancija od *” u (1,1°) & FlIme aVoricta(x»)(2)" 1 A
~ime Cvorieta(x’ ATEEA) ) Jalie

DEFINICIJA 340

8EE —» (Vixke2N) (y(ixk) = (As) (2) > (Ier'e_Za ) =x &
* J® admitancija od x* u (1,1°) & Fime ivorieta(x>)(1)= 14
~ime ¢voristan™*) ) - K))

D339,D340,K9 >-—-—

TEOREM 1043
(Vixk€2N) (Z(ixk) = Z(kxi) & Y(ixk) = Y(kxi))

KONVENCIJA 10

(1) (Vixke2N)(Z(ixk) = (Aa)(2) " Z(ixk) = 2)
(i) (Vixke2N)(Y(ixk) = (As)(2) «---- Y(ixk) = 2)
PRIMJERI
C L

520 (1) xe i10- 1} o- ok Sup

1,D339,Cit.6 )

@ z(ixk) = st LS

2,K10 2

(3 z(ixk) = 1y-iCa

R, ; "
R1R2 + RIRZCs

521  Xe R, —» 2Z(ixk) = —1 172

Rl + Rl(Rl + R2)08
c k
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522
2 (ixK) RIR2(Li+ "™ >8+<RIL2(h +I%5H*2(LjLg+lijLN"+Lg1)) e~L -~ L"s3
IX =
R1IR2+( YHR2(\+1>2 ™ 8+ N (1i +i2 J
Citat 7

"7-2 Driving-point and transfer admittance. Figure 7-4 ahows a
one terminal-pair network not containing any generators. MiL,and
Ij denote the traneforms of the voltage current respectivly,with
references as shown. By Definition 6-4, the driving-point admit-
tance at terminale (1,1%*) is

I,(s)

vios) Ty qTTST (7-52)

with ali initial conditions equal to zero. If node equations are
written with 1* as the reference node, then,

T(8) = A5 (7-55)

where Aand A,, are the determinant and cofactor (1,1) respecti-
yely, of the node-admittance matrix, as in Eq. (6-116b). It is
important to note that the node-admittance matrix of the network
of Fig.7“4 (including I-,) is the same as the matrix Yn(s)for the
one terminal-pair alone, without I,(s).(If loop equations are u-
sed, the matrices with and withoutlthe driver are different).”

(Seshu-Reed,Linear graphs and electrical networks.1961,str.165).

KONVENCIJA 11
Termin "matrica admitancije c¢voriSta“"(node-admittance matrix),

udefiniciji 541 ima znacCenje u smislu konteksta citata 7.

DEFINICIJA 541
((Vixke2N)(A(ixk) =z *—» (FH_rrcrz—ar(x) =x'" & (z je deter-
minanta matrice admitancije CvoriSta od x* sa 1* kao refe-

rentnim ¢voristem) & Flme CTOrISta(x»)<1’ > = 1>>
(i)(Vixk€2N)(Ai;L(ixk) je kofaktor (1,1) determinante A(ixk)).

D541,K11 5----
TEOREM 1044
(ViXk€2N ) (Y (ixk) = ~fu k )*
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(Vixke2N)(EIA(ix k)
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= EI(A(ixk), An (ixk))).

PRIMJERI
2S
523 (1) xe igQ - > Sup.
3F 48
1,D341 >—
(4+2+6s) - (4+6s)
(2) A(ixk) = 18s2 + 42s ¢ 20
-(4+6¢e) (2+4+3s+65)
2,D341 5----
(3) Au (ixk) = i+ 9s
2,3,D342 >
18 42 20
(4) EIA(ixk) = 9 6 0 =0,
O 9 6
18 6“F
524 (1) x€ |<_\/}/|\j Sup.
3F 4S
1,D341 >--—--
(4+6s) -(4+65s)
(2) A(ixk) 18s' + 18s + 4.
(4+65) (5+95s)
2,1)341 5----
(3) All(ixk) * 9s + 5
2,3,D342 N----
18 13 4

(4) EIA(ixk) * 9 5 0
0 9 5
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Citat 8
1.3 Network Elementa

We define three network elementa in our model: resietance, in-
ductance, and capacitance. The diagrammatic repreaentationa are
ahown in Fig.7.

—> 1(t) —> 1(t) i(t)
v(t) R v(t) L v (t)
v(t) =Ri(t) v<t) * 137 H(t) 5t

(a) (b) (c)
Fig.7 Network elemento

The preciae definitione of the elementa are given in terma of the
relationahipa between the current and the voltage at the element
terminala. These definitione are ahown in Fig. 7 and are tabula-

ted in Table 1.
Table 1

Element Symbol Voltage-current-relationships
Resistance R v = Ri

ﬂ=chGV

d
d

—
[

Inductance L Vo
i(t) = i f v(x)dx + i(0)
Jo
Capacitance C i - cda

v(t) - éjl1’;]i(x)dx + v(0)

Note that theae expreesions are valid only for the voltage and

current referencea ahown on the diagrams.Reversing either a cu-
rrent or a voltage reference will reverse the sign of the cor-

responding expresaion.(Seshu-Balabanian,Linear network analysis,
1959,str.10-12)

KONVENCIJA 12

Termini "kapacitet”, "otpor” i "induktivitet” u definicijama 343"
345 znacCe grane, odnosno elemente pasivnih elektrickih mreza u
smislu konteksta citata 8.



DEFINICIJE 343-345

345 (VxeSel>mre-a)(E5(x) {zi zeEl(x) A "z je kapacitet’})*

344 (Vx€Selimreza)(E"™(x)

{zi z«E*(X) A "z je otpor”}).

345 <V«Sel>mreza)(E£(x) {z: z«<E*(X) A "z je induktivitet"})

DEFINICIJE 346-348

346 NI(1 = {x: xeN & <Fmreia<x) =* ~—» ES’, = E£(y) UEE(y))}.
347 Nj>0 = {x: x«N & oy ES’/ = E£(y) UEp(y))}e
348 NO,l = <! xeN 4 (Fmreia(x> =* - Ei/ = Ep(y) UEE(y))}
PRIMJERI
2nF )
525 x&¢ O---1f--—--o > xi(NI, 1 UN1>0).
20
526 xe > X«(N1(0 UN0(1).
30
527 xe O°0 00V 0—VQQQJ-0 > x«(NOii UNi(1)
528 x<=£ 7 I >
U 00074 « NLT

W el QM
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Citat 9

"Definicija 5» Otvoren put je jednostavan ako su u njemu svaka
dva Cvorista razlicita”. (D. BlanuSa, ViSsa matematika |, 1965,
str.194)

DEFINICIJA 549

(V (e,D)«{(T,D)>(1i0),(0,DH)HN(2Ne f = {z: x«Ne f j,3ceVx &
z = jxk & (svaka grana u grafu od x nalazi se bar u jednom je-
dnostavhom putu (cit.9) koji povezuju cvorisSta ”J" i "k”)}).

KONVENCIJA 15
"(V (e,f)e{(1,0),(1,1),(0,D)(Vixk€2Ne>f)X — (Vxike2Ne f)X.

PRIMJERI

531 (x€%& 1,3eV. & 1%)) ix j62NI)O

b o (xeo—/\/\/@/\/\/\—o & 1,,1er) e -liXJGZNO’lc

k
534 (xe 14 % ;)m - 1xk€2N-i’ 1°

555 («(o-W V Uo o—1}—o) & i(Jevx) - > IxJe2Nl,o
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Citat 10

"Definition 5-1. A graph G is nonseparable |If every subgraph of
G has at least two vertices in common with its complement. Ali

other graphs are separable.

Definition 5-13. A one terrainal-pair graph G is nonseparable if
the graph obtained by adding an edge between the terminale is
nonseparable”. (Seshu-Reed, Lin.Graphs, and electric.netw. 1961,
str. 35 i str. 53).

D349,Cit.I0 5----

TEOREM 027
(Vixke2Ne£.)(ixk je "neseparabilan dvopol® ("a nonseparable one

terminal-pair graph”)).

5.2. mBROJEVI KAO TEMELINE KARAKTERISTIKE DVOGENERATORSKIH
ELEKTRICKIH DVOPOLA

5.2.1. m-GRAFOVI DVOGENERATORSKIH ELEKTRICKIH DVOPOLA

DEFINICIJA 350
(VXENL) (w = {(e,U)0 gipy = (Fime grane(x)(e)eEC(x)

u-A) & ~ime grane(Xi(e)eEE(x) -» u =B)}).
DEFINICIJA 351
(TxeNTiO)(u.x = {(=.«): «Ex & (»2 . grane(x)(e)6EC(x) **

u=A 4 FIL grane(x)(e)6EB(x) ** “ =B)}).

DEFINICIJA 352
(VxENOii )(<x = {(e,u): e<Ex & (F ™ gla,e(x)(e)eER(x)

u=A) 4 (Fime grane(x)(e)eEI (x) u“ B)>)*
PRIMJERI
T R e 7 | EE N — > ux = {(e,A), (f,B)}).

557 xe 02 -—OLWV~"™ o > « X {(e,A),(f,B)}).

558 X« wx - {(e,A),(f,B)})
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D350-352,T18 >--—-

TEOREM 1045
(V (e, H)E{(T,0),(i, 1M 0,1)})(V x €Ne> f)(wx6Sfunkc(Ex,Qt )).

DEFINICIJA 553
(V(e,HE{(,Ni(1,0),(0,D})(VXENef)(Oef(x) =y * y€0 &

V W & V Ex * ly=Ix * w=awx)°’

PRIMJERI

539 x€o0— 1} o-“nnr-° — » °T,i(X)€

A
540 xei{ !: }k Ol’léﬂ?:k
541 xe< —> 03 (x)e cﬁa
! A
B
542 xe —_— Oo’l(x)e A

543 xe oA\ \\V—0 . (Oo’l(x)eoi-o & Oi’o(x)eo—g—o).

D353,D333,D305 >--—-
TEOREM 1046
(V(e,f)€{(1,1),(1,0),(0,D)}) (O e>fe€Sfunkc(Ne f,Gt)).

KONVENCIJA 14

DEFINICIJA 354
2Gn = {ixk: ixke2G & (aiyk€2Nef)(ixk = 10(y)k)}.
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5.2.2. IME IMPEDANCIJE 1 ADMITANCIJE DVOGENERATORSKIH
ELEKTRICKIH DVOPOLA

TEOREM 1047
OEE —» (((As)(F) je reaktancija (reactance function, Reaktanz-
Funktion)) <—» (as)(F)ET™N).

Dokaz

(1) "Theorem 9. A real rational function IS iIs a reactance fun-
ction 1f and only if (&) ali of i1ts poles are simple and lie on
the ju>-axis; (b) the residues are ali real and positive; (©) the
function has either a pole or a zero at s»0 and s=00 d and
Re (Ju>)-0 for some wM.(Seshu-Balabanian,Linear Networ Analysus
%959,str-368),

>
(2) funkcija kompleksne varijable F(s) je reaktancija,ako i samo

ako egzistiraju nenegativni realni brojevi g,m, i egzistira 2n
pozitivnih realnih brojeva .hn, k™. kn, (pri ¢emu n moze biti
I nula), takvih da Je

F(s) * %—+ Z (-—- 5— ) ¢ ®e.

2,Db137,D130,T670,T671 -———T1047.

DEFINICIJA 355
Ve, HEL(1, D, (1,0),(0, DN @Ze>F = {(ixk,2)J ixke2Ne>F &

Z(Gixk) * 2)).

DEFINICIJA 356
Y(e,De{(1,D,(T,0),0,DP(Ye>F « {(ixk,z): ixke2Ne>F &

Y(ixk) = z}).
PRIMJERI

1Q IH _
544 XE (ixk, 1+s)€Z0>1.

IF 1Q k n
545 xe o- {4 O —o0 N (ixk,1+s)EYq
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TEOREM 1048
(Ve,f6{(i,1),(i,0),(0,1)})(Z e>f€Ssurdekc(2Ne>f,Te>f) ft

Ye>f €Ssurjekc(2Ne ,f,Tf,é)) *

Dokaz

(D"Theorem 11. A rational function of s is a reactance function
if and only if it is the driving-point impedance or admittance
of a lossless network.

Theorem 14.A rational function F(s) is the driving-point impeda-
nce of an RC network or the admittance of an RL network if and
only if ali of its poles are simple and are restricted to the fi-
nitive negative real axis (including s=0 but excluding s=o00)with
real positive residues at ali poles and with F(») real and non-
negative.

Theorem 16. A rational function F(s) is the driving-point impeda-
nce of an RL network or the admittance of an RC network if and
only if ali of its poles are simple and are restricted to the ne-
gative real axis, excluding the point s=0 (but including infini-
ty) with F(0) real and nonnegative, and with ali the residues of
(s) real and positive".

(Seshu-Balabanian,Linear Network Analysis,1959»str.370-375)«
I(ThIl),T1047,0339,D340,D346,T670,T671 >—

(2)s6H ((as)(F)cTj 2 Oixje2NT>IL)(Z (ixj) = (as)(F)) &
(AsKFleTjn (BiXj€2NI J1)(Y (ix]j) = (as)(F))).
I(Thl4),D347,D348,D355,D356 >--—-
(3)(ixk,F(s))€(Z1>0nYO0>1) (3g,m6Re+)(F(s) =] +m v
(ffhl,..h n>k1,..k n€Repoz)(F(s) = |
3,b137,Db130,T576,T577,T670,T671,D539,D340 &----
(4)seH ((as)(F)€Tj O (aixje2N1>0)(Z (ixj) = (As)(F)) &
(As)(F)eT~'0 (BIXJE2NOL)(Y (ixj) = (ax)(F))).
I(Thl6),D347,D348,0355,D356 >----
(5)(ixk,F(s))6(Z0>1n Yi>0) (2g,m€Re+)(F(s) =g + ms v
(3:h1, . e.kn€Repoz)(F(s) =g + NkNMs N+ mBN
5,0137,0130,T576,T577»T670,T671,D339»D340 5----
(6)seH -» ((as)(F)€TOil (5rixj62N0>1)(Z (ixj) = (as)(F)) &

(as)(F)ETO0>1 > (ffixje2NT>0)(Y (ixj) = (as)(F))).
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2,4,6 >-—
(7)eeH (V (e,H)€{(1,0),(1,1),(0,1)})
((As)(F)ETe>f (aixje2Ne>f)(Z (ixj) =(As)(F)) &
(As)(F)ETe’ f (EiXj€E2N~-)(Y (ix]j) =(As)(F))) .

7,0555,D356 >----T1048.

T1048,D156,T652,Cit.6 > T1049,T1050.
TEOREM 1049

(YIxke2Ne f)(Z (ixk) = HY(ixk) = YTIxkT)e
TEOREM 1050
(Yixk62Ne f)(Y (ixk) = HZ(ixk) = gf

T1049,T1050,T721 -
TEOREM 1051
(Yixk€2Ne f)(~ (Z (Ixk)) =M (Y (ixk))).

PRIMJERI
546 xeto-—-"-—-E:Dk dz(ixk) = ABA &
$Y(ixk) * BAB .

547 (xe e & i,kevx)——>OZ(1xk) = BABA.
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5.2.3. LJUSKA ELEKTRICKIH DVOPOLA | ALGEBRA REZIDUALNIH
KLASA LRC-DVOPOLA MODUO JEDAN

5.2.3.1. KORESPODENCIJA IZMEDU LJUSKE [IMPEDANCIJE, RESP.
ADMITANCIJE DVOGENERATORSKOG ELEKTRICKOG DVOPOLA
I LIJUSKE NIEGOVOG mM-GRAFA

TEOREM 1052
(Vixke2Ne f)(q(Z (ixk)) = q(jO (x)k)).

Dokaz
(1) jxke2N-j- 1 & q(Z(jxk)) = aa Sup.
1, T610,D140)d141 5-—

(2) Ilim(Z(jxk)) =lim(kls“1)=o0 & Iim(Z(jxk)) = limikps"1l) =0
s— O s—»0J S->00 s—0oon

2, D33MCit.6 >--

(3) (U svakom putu u X, koji povezuje cEvorista "j" i "k” nalazi
se bar jedan kapacitet) & (egzistira put u x koji veze cvo-
riSta "j" i "k” i sve grane puta su kapaciteti).

3, D350-D353,D267,0268 >--

(4) (Vixk€2N~1)(q(Z(jxk)) = aa q(io(x)k) = aa)

(5) jxke2N™ N & q(JO(x)k) = aa Sup.

5, D350-D353,D267,D268 >--

(6) (U svakom putu u x, koji povezuje cvorista "jH i "k” nalazi
se bar jedan kapacitet) & (egzistira put u x koji povezuje
¢vorista "j" i "k" i sve grane puta su kapaciteti).

6, D339,Cit.6 >—
(7) lim(Z(jxk)) =00 & Ilim(Z(jxk)) =0
S—» O S —> 00
5,7,7610,0140,D141 >----
(8) (Vjxk62Njjl1)(q(JO(x)k) = aa —» q(Z(jxk)) = aa)
4,8 >--—--
(9) (VixkeN™1)(q(Z(jxk)) = aa q(io(x)k) = aa).
Iz 9 i korespodentnih lema za ostale tri moguce vrijednosti lju-

ske CL-dvopola, teorem 1052 vrijedi za svaki CL-dvopol,a da vri-
jedi i za svaki CR-dvopol i za svaki RL-dvopol, dokazuje se ana-

logno.
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PRIMJER 548

v -1 Sup.

1, D350,D339 >--

(2) z(ixk) = 2 & O(X)E M-0-"-i

2, D269 >—

(3) lim (Z(ixk)) =oo & lim(Z(ixk)) = & q(i0O(x)k) = ab
s— 0 S—»Q00

3, T7610,D140,D141 >--
(4) q(Z(ixk)) = ab = q(10(x)k).

T1052,T1051 ------
TEOREM 1053
(Vjxke2Ne f)(q (Y (Ixk)) = Dq(joO (x)k)).
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5.2,3.2. ALGEBRA REZIDUALNIH KLASA LRC-DVOPOLA MODUO JEDAN

Limes funkcije impedancije LRC-dvopola, kad "s" tezi nuli, ili
je jednak nuli, ili je jednak beskonaCnom,ili nije niti prvo ni-
ti drugo. Isto vrijedi i za limes funkcije Iimpedancije kad "s"
tezi beskonacnom.Na osnovi ovakvog ponaSanja funkcija kompleksne
varijable u nuli i u beskonacCnosti, razvrstane su i funkcije im-
pedancije LRC-dvopola u devet ekvivalencijskih klasa.Neka je sva-
koj od ovih klasa pridruzen po jedan uredeni par iz skupaf{l,O,l}
i to tako, da je prvi Clan para i, resp. 1, resp. 0O jedino onda,
ako impedancija reprezentanata ekvivalencijske klase ima u nuli
pol, resp. nulu, resp. niti jedno niti drugo, dok je drugi Clan
para jednak 1, resp. 1, resp. O, jedino onda ako impedancija re-
prezentanta klase ima u beskonacnom nulu, resp. pol, resp. niti
prvo niti drugo. Neka se ovako, svakom LRC-dvopolu,pridruzen par
brojeva zove "ljuska impedancije LRC-dvopola”.

U analogiji sa m-grafom dvogeneratorske mreze, m-graf RLC-mre-
Ze karakteriziran je time, Sto se kod njega razlikuju tri tipa
grana, koje neka se zovu C-, resp. R-, resp. L-grane. Pretposta-
vlija se da je odavde jasno, Sto se podrazumjeva pod C-putem,
resp. C-rezom i slicnim terminima uz prefikse R-, resp. L-.

Skup ovakvih m-grafova, odnosno skup m-dvopola koji se iz njih
dobiva, takoder je razvrstan u devet ekvivalencijskih klasa, veC
prema tome iz kojeg tipa grana se sastoji put, resp.rez u odnosu
na ¢voriSta dvopola.Neka je svakoj od ovih ekvivalencijskih kla-
sa pridruzen po jedan uredeni par iz skupa simbola {C,R,L} i to
tako da je prvi C¢lan para jednak C, resp. L, resp. R, jedino ako
reprezentant klase ima C-rez, resp. L-put, resp. nema niti prvo
niti drugo, dok je drugi Clan para jednak C, resp. L, resp. R,
samo onda ako reprezentant klase ima C-put, resp. L-rez, resp.
nema niti prvo niti drugo.Neka se ovako svakom LRC-dvopolu pri-
druzen par simbola zove "ljuska m-grafa LRC-dvopola".

Lako je uocCiti da su obe particije LRC-dvopola u ekvivalenci-
jske klase, medusobno jednake, odnosno da kao generalizacija te-
orema 1052 vrijedi i za svaka dva LRC-dvopola, da im je ljuska
impedancije jednaka, ako i samo ako im Je jednaka i ljuska pri-
padnih m-dvopola. Opisanu korespodenciJu prikazuje tablica 1
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X q(Zz(13tk» q(io(x)K)
0 (1,1) a,c)
(0,1) (R,C)

r-nrir-|

‘U U 1 (1,0) (L,R)
10— qp---0k (1,1) (C,C)
i0—"VVV*—Ck (0,0) (R,R)
0
io— ° k (1,1) (L,L)
0~ 1} 0—AS/S 0K (1,0) (C,R)
i0—"VSA—o-2"ONp—ok (0,1) (R,L)
io— 1} o-“nnr-~k (1,1) (C,L)

Tb.l

Devet ekvivalencijakih klasa LRC-dvopola prikazano je u prvom
stupcu preko reprezentanata klase koji imaju najmanji broj grana.
U drugom, resp* trecem stupcu tablice naznaCene su vrijednosti
ljuske impedancije, resp. ljuske m-dvopola koje pripadaju svakom
dvopolu iz korespodentne ekvivalencijake klase RLC-dvopola.

U analogiji sa kvazl uredenjem r u teoriji m-broJeva,definira-
no je u skupu ekvivalencijskih klasa LRC-dvopola parcijalno u-
redenje "r" tako, da je za svaka dva RLC-dvopola "x r yM onda i
samo onda, ako prvi ¢lan ljuske impedancije od X nije manji od
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prvog Clana ljuske impedancije od y i drugi ¢lan ljuske impedan-
cije od x nije veci od drugog clana ljuske impedancije od vy.

Ako se "x r y" tumaci kao M je nizi od y", onda slika 1 Je
Hasseov dijagram parcijalnog uredenja skupa ekvivalencijakih kla-
sa LRC-dvopola relaci jom r.

Sl.1

Algebra rezidualnih klasa LRC-dvopola modulo jedan je algebra
koja se dobiva uvodenjem, u sirup ekvivalencijskih klasa LRC-dvo-
pola, dviju binarnih operacija i to preko serijakog,resp* para -
lelnog spajanja reprezentanata ekvivalencijskih klasa*Ova je al-
gebra izomorfna reSetci (lattice) koja se dobiva iz parcijalnog
uredenja, prema slici 1, uz supremum i infimum kao binarnim ope-
racijama, pri Cemu "serijskom spajanju" korespondira operacija
"sup", a "paralelnom spajanju” operacija "inf'".ReSetka na slici 1
izomorfna je kardinalnom produktu antiizomorfno uredenih trocla-
nih lanaca, kao Sto su npr. {+1 <0 < -1} i {-1 <0 < +1}.
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5.2.4. KORESPODENCIJA IZMEBDU IMENA IMPEDANCIJE RESP.
ADMITANCIJE | IMENA mM-GRAFA DVOGENERATORSKOG
ELEKTRICKOG DVOPOLA.

Citat 11

(1)8-.Enumeration of natural frequencies. The zeros of the net-
work determinant (either loop or node)are referred to as the na-
tural frequencies of the network, for these are the frequenciea
of the transient response. One of the classical problems is to
count the number of natural frequencies of a network by inspect-
ion. An earlv solution to this problem is an algorithm due to
Guillemin(69)» applicable to networks which contain no all-capa-
citor or all-inductor loops. More recently, Reza(145) gave the
solution for networks containing only two types elementa.The co-
mplete solution was obtained independently by Bryant(18), Bers
(10), and Seshu (in unpublished notes,1958).

Definition 8-1. Order of complexity. The order of complexity of
a network is the number of finite non zero zeros of the determi-
nant (loop or node),with each R,L and C considered as a network

element.

(2)It is convenient to use a formal method of computing the num
ber of linearly independent cut-sets of G contained in a subgraph
and thereby introduce some useful notation.Let G be, for instan-
ce, the L-subgraph, i.e.,the subgraph consisting of ali the indu-
ctor.Consider short-circuiting ali elementa of G which are not

inductors. From the vertex-partitioning interpretation, of a cut-
set given in Section 2-4 (immediately preceding Definition 2-12),
it is clear that every all-inductor cut-set of G remains a cut-
set of the resultant graph.Since the new graph contains only in-
ductors, the number of linearly independent L-cut-set of Gis e-
qual to the rank of the graph obtained by short-circuiting ali

other elementa.Let this number be denoted by PLs» with a similar

meaning for RCq. Similarly, the rank of the L-subgraph [= (num-
ber of inductors) - (nullity of L-subgraph)] can be found by o-
pen-circuiting ali other elementa and can be denoted by Ro 9
with a similar meaning for RCo.Similarly, A.q is the nullity of
the graph obtained by deleting (open-circuiting) ali non-L-ele-
ments, etc.

(3)Theorem 8-1. The order of complexity of a passive network wit-
hout mutual inductances is

N o Lo s " FPs (8-8)

with the above notation". (Seshu-Reed, Linear graphs and electri
cal networks, 1961, str.197-200).
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KONVENCIJA 15
Za svako X€Nei., "red kompleksnosti od x" je "order of complexity
of a network” iz definicije 8-1 u citatu 11(1).

TEOREM 1054
(V(e,fle{(1,1),(1,0), (0,1)}) (VxeNei.) ("Red kompleksnosti od x"
jednak je (f—e)AD(O(x))).

Dokaz
D186,0188,D0280-283,D?53,(T025,T026),Cit.lI(2) >--- (1),(2),(3)
(x)(vx«nlil)( A = Rb(0(x)) & R = Ra(0(x)) a

S S

PL = eB(0(x)) - Cb(0(x)) =v(O(x)) - 1- Ra(0(x)) &
0
e = eA(0(x)) - Ca(0(x)) =v(0(x)) - 1 - Rb(0(x))).
o]
(2)(vx€ENx 1)(PT_ =0 a p, =r,(o(x)) & pI =0 &
i*1 LB a o]

pg = v(0(x)) - 1- Rie0(x)).

(3)(Vx«NOil)( L = Ro(0(x)) & R =oat R

04
P. =v(0(x)) - 1- R (0(x)))#
Lo a

1,2,3,T921 >---- (4),(5).
(4) (VxeN? <P, + p, - PL- p, = 2(v(0(x))-I-R (0(x))-Rb(0(x))

= 2Xg(0 (x)))-
(5) (Vxe(Ni(0 U NO(1))(PLo+ FCq- PLg- PCs = Xs(0O(x))).

Cit.11,(4),(5) >----T1054.

PRIMJERI

549 (1) x€ Sup
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1,0353,D346 >—

B
0(x)€ ‘6‘3

(2)

2,0234 >—-
@ A OX) =2

2,3, T1054 5-

(A) red kompleksnosti od x jednak je (I-(-1))2 = 4.

550 xeo—] m

red kompleksnosti od x jednak je (0-(-1))2 = 2.

TEOREM 1055

Vixk€2Ner) (A EIA(IXK) =0 AP(Y(ixk)) = A8 (aox)k))=
Dokaz
(@) ixkeZNef & El.(ixk) =0 Sup.

1,D342,T1044,Cit.11(D8-1),T1054,T623 >
@ (F-e)A, (Y(iX)) = (F-e)A(I00)K)

1,2 -

(3) (Vixje2NeF)(i EIA(IXK) = 0 ALY (X)) = ALGOGOK)

3,D0324,7T1044,T1054,T628 >— T1055.

T1055 >T1051, T625 >
TEOREM 1056
(Vixk€2NeF)(-i EIAGIXK) = 0 «  Ag(Z@ixk)) = Ag(i00)k).

T10547°T1056,T1044 >— T1057,T1053.
TEOREM 1057
(Vixke2NeF) (Ag (Z(ixk)) < Ag(i0()K))e

TEOREM 1058
(Yixke2NeF) (Ap{Y(ixK)) < Ap(10GOK)).

T1054-T1056,T1052 >  T1059,T1060.

TEOREM 1059
(Vixke2Ne F)(NEZ(xK)) = MiO(x)k) Ela(ixk) = 0)
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TEOREM 1060
(Vixk€2Ne f)U (Y (ixk)) = Dd(iO(x)k) - EIA(ixk) =0).

T1057,T1058,T1052,T'561 >---- T1061,T1062.
TEOREM 1061
(Yixk€2Ne f)(~ (Z (ixK)) < $(10(x)K)).

TEOREM 1062
(Vixk€2Ne f)(~ (Y (ixk)) < D$(iO (x)k)).

PRIMJER 551

1H 2H 1H 1H ;
4H 2H
(1) xei i& yei i Sup.
1Q 2Q 2Q 2Q
1, D339,KO >--

(2) Z(ixj) =8 21 'f 22s * 8in & Z(iyj) =a f-j-f
5+ 7s + 2s
2, T1048,D180,D0140,D141,D147 >—

(3) MZ(ixj)) = BABAB & d(Z(iyj)) = BAB

1,D353,T1046
B B

(4) 0(x), O(y)e 1@(?»—3—03
4,D286 2----

(5) $(i0(x)j) = d(iO(y)j) = BABAB
3,5»T361 >-—--

(6) d(Z(ixj)) = G(O(x)]) & $(Z(iyj) < &(iO(y)j).

DEFINICIJA 357
(V(e,f))(2Nef(nedeg) = {ixk: ixk<2Nef &  EIA(ixk) = 0}).

D357,T1059,T1060 >---- T1063,T1064.
TEOREM 1063

(Yixke2Nef(nedeg))($(Z (ixk)) = $(10(x)k)).
TEOREM 1064
(Vixk€2Nef(nedeg))U (Y (ixk)) = DK10(x)k))e
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5.3. INTERPRETACIJA RELACIJE KONGRUENCIJE MODULO NULA
M -STRUKTURE U MODELU TEORIJE ELEKTRICKIH MREZA

5.3.1. IZOMORFIZAM DVOGENERATORSKIH ELEKTRICKIH DVOPOLA

DEFINICIJA 358
(V (e,f)6{1,1),(1»0),(0,)})(Vixke2G N)

(0“N;(ixk) = {myn: myne2Ne f(nedeg) & mO(y)n « ixk}).

PRIMJERI
552 x€io-A_oj -» (kymeO™1(ixj) * (ReRepoz &
R
yeko—V W —°m))«
A B B
553 X€ICC3X~"AXZAAN (kym€0™ 1(ixj) *
A A A

AT *RMZNA*4 > *QeRepoz N AINB A AN *

Heuristicki evidentan je
TEOREM 1065
(VzeTef)(Vixje2GN)U (z) = $(ixj) -*

(Erkym€0e” (ix j)) (Z(kym) = z)).
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PRIMJERI

554 (1) Zz = s 0,7s2 + 0,05 &

555 (1) z = s 5

Sup.
1,7s4 + s2 + 0,05

1,D166,T674,T602,D0180,D0286 >—

(2) zeTj x & Hz) = $(ixj) = BABA

1,2,T1065 >—

(5) Postoji LC-dvopol sa impedancijom jednakom z i m-grafom
izomorfnim sa x, kao npr.

IH

_—W——

2H
oF

ye iJ}-—l

§ i (1y3eo§}1(1x3) z(iyj) = 2)*

682 + 308 + 8
+ 128 + 2

& xeio J Sup.

9s

1,D166,T647,T602,D1801D286 >—
(2) z€Tq & $(z) - $(ixj) = ABABA

1,2,T1065 >—
(4) Postoji RI/-dvopol sa impedancijom jednakom i m-grafom

izomorfnim sa x, kao npr*

2H 2Q
yei i e (iyjeoa’ll(ixj)) & Z(iyj) = z.

1H 3H
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5.3,2. PROSTOR IMPEDANCIJE | PROSTOR ADMITANCIJE NAD
SKUPOM  IZOMORFNIH DVOGENERATORSKIH  ELEKTRICKIH
DVOPOLA

DEFINICIJA 359
(VIXJE2GN)(ZO” £ (I1x))

{z: kym€0~J(ixj]) & Zkym) = z}).

DEFINICIJA 360
(VIiXJ€2GN) (Y O ™ (ix))

{z: kym€0’":(Ixj) & Y(kym)

I
N
—
o

PRIMJERI

B
556 x € | o (z € Z 0 0(ixj]) «»
A

(C1,C2,R6Repoz A Y€ icH & Z(iyj) = 2)).
557 x€ A zevorto(ix j) (C1,C2,L1,L2€Repoz &
‘—Nnnnp—
Clll1 ~C2L2 & y« CjZI =IC£ & Y(iyj) - 2)).
I<8— -0

D359,D360,D358,D0357,T1059,T1060 >— T1066,T1067.
TEOREM 1066
(YZETe f)(ViXj€2GN)(z€Z0"J (ixj) <-* Hz) = #(ixj)).

TEOREM 1067
(VZETe f)(ViXjE2GN)(ZEYO" £ (ix ) Hz) =D $(ixj)).

TEOREM 1068
(Vixj,Kym€2GN)(& (ixj) = $(kym) «
(a(e,f))(Z0 "I (ixj) = zO"I(kym))).

Dokaz
(1) ixj,kym€2GN & $(ixj) = $(kym) Sup.
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1,T1065 >--—-
(2) z€ZO J(ix]j) zeZO~J(kym) &

weNONM(kyra) -» WE€ZOM(ixJ).
1,2, >---'
(3) (VIXj,kym€2GN) (M (ixj) = $kym) -* ZO~"(ixj) = ZO*I(kym))

(4) (a:ixj,kyin6 2GN)(Z0“J (ixj) = ZO*'™Nkym) = W) Sup.
4, T1065 >—

(5) (5TzeW)(0(z) = & (ixj) & (BTwEW)(d(w) = $(kym))

5, T1061 >--

(6) d(z) < $kym) & 3(w) < $(ixj)

5,6 >

(7) #(ixj) < $kym) & #kym) < $(Ixj)

7,T358 >— -

(8) (Vixj,kym€2GN)(ZCfE(kym) -*m ixj 9 kym).

3,8 > T1068.
T1065,T1061,T358 >-------

TEOREM 1069
(Yixj,kym€2GN)(d (ixj) = $(kym) «—>

(Sr(e,f))(YO~£(ixj) = YO"I(kym))).

PRIMJER 558
B b
& y€ &
A A
R R
c, Ry 3 4
C4 C5
2€ i J Cso we ko——l Sup.
R C
' . Ce Cq
1,D286 >—

@ $(@ixi) = $(kym) = ABABA
1,2,T1068 5--
(3)(C~,C2»CA,CARANR2ER«pOZ  ->
(GC,Cg,Cy, , RMERCPZ)(Z(izj) = Z(kwm) &

C5,66,C7,R3,R4eRepoz
(GC1,C2,C5,C4,R1,R2eRepOZ)(Z(kwm) = Z(izJ)).
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5.3*3. PROSTOR m-DVOPOLA NAD SKUPOM DVOGENERATORSKIH
ELEKTRICKIH DVOPOLA JEDNAKE IMPEDANCIJE, RESP.
ADMITANCIJE

DEFINICIJA 361
(Vz«Te f)(Z _1(z2)

{ixj: ixje2Nef(nedeg) * Z(ix])) = z}).

DEFINICIJA 362
(Yz€Tef)(Y"1(z)

{ixj: ixj62Nef(nedeg) & Y (ixj) = 1z}).

PRIMJERI
10 IH N
559 x€ IX Z"1(1+8) e
1F IH o -1 8
560 x€ to— 1}— c>-~7nnr~od IXjEY A(_l__:“g*).
a

DEFINICIJA 363
(Yz€Te f)(OZ*1(z)

lixj: ixj626N & (3iyj€Z”1(z))(10(y)d = ixj)}).

DEFINICIJA 364
(Vz€Te f)(OY” 1(z)

I
X
—
p
—
N

{ixj: ixje2GN & (aiyj€Y-1(z))(10(y)J

PRIMJERI

561 x€{i0— o] o—B—QJ} —

(VKERepoz)(ixj€0Z"1(ks))

B , 1 + k,s2
562 x€ (Tkl,k2€RepOB)(i*j€ OY~A(---ip A- >).

D358-D364,D172,T1066-T1069,T1049,T1050 >— T1070-T1075.
TEOREM 1070
(VzETei,) (VixkE2GN) (ixk60Z""1( 2) > <Kz) = #(ixk)).

TEOREM 1071
(YZETe f) (Vixk€2Gjj)(IxkeOy™1(z) *—» $(z) = D#(ixK)).
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TEOREM 1072
(VzeTe f)(0Z“ 1(z) = OY“1(i*z)).

TEOREM 1073

(Vz€Te f)(OY” 1(z) = 0Z'1(nz)).

TEOREM 1074

(YX,yeTflf)(x 8y 0Z"1(x) = OZ*1(y))
TEOREM 1075

(Yx,yeTef)(x 8y OY~1(x) = OY“1(y))

5.4. KANONSKI DVOGENERATORSKI ELEKTRICKI DVOPOU

DEFINICIJA 565
(VxeNe;f)(e(x) = c(0(x)) & v(x) =v(0(x))).

D365,D334,D0332,0186,D189 >--—-
TEOREM 1076
(Vx6Nef)(Fmreta(x) =y -* (e(x) = x(Ey) & v(xX) = k(V?)).

DEFINICIJA 366
(V (e,f)6{(1,1),(1,0),(0,D})(2 N ef(kan) = {ixj: ixj€E2Nef &

(akym62Ne™.)(Z(kym) = Z(ixj) —» c(X) < e(y))}).
D366,T1048 >----

TECREM 1077

(Vz€Tef)(3ixJE2Nef(kan))(Z(ixd) = zK

TECREM 1078
(Vixj62Ne f)(ixje2Nef(kan) e(x) =\NU(Z(ixJ)))).

Dokaz
T1057»T281 5----
(1) (Vixj€2Nef)(A(Z(Ix]j)) < X (10O (x)])).

1,71046,T1006 5----
(2) (Vixj€2Ne f)(A (Z (ixj)) < e(0(x)))e
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2 ,T1077>T1065>T1009 >—
(5) (YzETef)(dixjeZ~1(z))(X (Z(ix]j)) = e(0(x))).
2,3,D565,D366,T726 >----T1078.

T1078,T290,T1051 >—
TEOREM 1079
(Vixj€2Ne f) (1x j€2Nef(kan) e(x) = X(*(Y(ixJ))).

T1078,T1059> T1010
TEOREM 1080
(Yixj€2Ne f)(Ixj62Nef(kan) ~ n E IA(ixj) =0 & iO(x)j€2Gtkan).

PRIMJER 563
IH

1F
(1) xe 10—|ij Sup.

1F 1H

1, D339 >—
2) Z(ixj) = I —
(2) Z(ix]J) L

2, T1048,D180 >—
(3) $(Z(ixj)) = ABAB

3, D029,D365 >--

(4) X(&(Z (ix])) = X(ABAB) = 4 = e(x)
1,4,T1078,D346 >----

(5) ixJE2NI,i(kan)’

PRIMJER 564

(1) X6 i0---1]----0 Y] Sup.
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1.D353

A B
(2) 0(x)e io— -0-2—0

2,0286,D189 >—
(3) *(iO(x)J) = ABAB & e(0(x>) =5

(4) \(ABAB) = 4 + e(0(x))
4fT1010 >----

(5) NiO(x)j€2Gtkan
1,5»7T1080,D347 >----

(6) ->ixJ«NiiO(kan).

DEFINICIJA 367
(VzeT~"M Z'Niz) = {ixj: ixj€2NQf(kan) & Z(ixj)

1
N
—
o

DEFINICIJA 368

(VzeTef)(Ykan(z) = {ixj: ixJe2Nef(kan) & Y (ixj) = z}).
PRIMJERI
10
IF
-1 28 + 1
€1 » ixjez, - (
05 X ; Jka"a+33+1
1F
10
0,5H
566 XE€ i i — 1‘J€Yk:n( 2s + 1

8 + 38 + 1

0,250
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DEFINICIJA 369
(VzETe f)(OZ]™n(2)

{w: ixjez™n(z) A w =1i0 (x)j}).

DEFINICIJA 370
(Vz€lef)(OY~n(z)

w: ikNMiJNCz) & w=10(x)j}).

D367-D370,T1079»T1080 5----

TECREM 1081
(Vz<=Te f)(Yixk€20N)(ixk60Z"gn(z) ixke2GtkanA $(ixk)=%$(z)").
TEOREM 1082
(Vz€Te f)(Vixk6 2GN)(ixj€OY~™n(z) > ixk€2akan& $(ixk)=D$(z)).

PRIMJERI
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5.5. m-RIJECI KAO PRIRODNI REPREZENTANTI STRUKTURE
DVOGENERATORSKOG ~ ELEKTRICKOG  DVOPOLA

PRIMJER 569

(1) ixj je elektricki dvopol i impedancija, resp. admitancija od
iXj je zi z je (e,f)-imitancija i ime od z je ABABAB. Sup.

Ime od z je ABABAB, sto povlaci 2 i 5.

(2) dijametar m-grafa od x nije manji (u smislu D74) od ABABAB i
iIXj je nedegenerirani elektricki dvopol (EIA(ixj) £ 0), ako
I samo ako je dijametar m-grafa od x jednak ABABAB. To jest,
imenom od z karakterizirana su topoloska svojstva svih dvo-
generatorskih elektri¢kih dvopola impedancije jednake z. Ta-
ko npr., ako je

, onda je dijametar od x jednak
ABABAB, Sto implicira egziste-
nciju elektrickog (e,f)-dvopo-

la impedancije jednake z i m-grafa izomorfnog sa Xx.

/\ B Ao+Alsf‘e+AESZ(f"e)+83(f“e)

je kanonska s-forma od z,

B +B-,sf~e+B0s2 (f"e) ako i samo ako svaka po-

Cetna glavna subdeterminanta matrice

,1 00
0 0

Ao Al A
O Bo B1 B2
O poara2l O
0 0 gyprB2Y
0 0 poa1nm2l
0 0 0 pyp1B;

je pozitivna. Imenom imitancije z, odredena je korespodencija
1znedu parametara kanonske s-forme od z i1 glavne dijagonale
matrice od z.
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Ljuska imena od z je ab, éto povlaci 4 i 5.
(4) Postoje pozitivni realni brojevi ki1 k2» takvi da je

lim(z) = k,se A lim(z) = k?sf
8“> 0 8—»

(5) (i) Ako je z impedancija od ixj, onda ixj ima ulazni e-rez
(cut-set) i ulazni f-rez. Tako npr. ako je z (1,0)-imi-
tancija, onda u x postoji skup kapaciteta uklanjanjem

kojih se postize razdvajanje CvorisSta "i" i1 "j", 1 pos-
toji skup otpora uklanjanjem kojih se postize razdvaja-
nje cvorista "i" i1 "j"

(i1) Ako je z admitancija od ixj, onda ixj ima ulazni f-pUt
i ulazni 5-put. Tako npr. ako je z (1,0)-imitancija,on-

da CvorisSta "i” i "J" povezana su u X putem Kkojem su
sve grane otpori i putem kojem su sve grane induktivite-
ti.

Broj slova imena od z je Sest, sto povlaci 6 i 7.

(6) Stupanj karakteristicnog polinoma od z je Sest i red matri-
ce od z je Sest.

(7) ixj je kanonski elektricki dvopol, ako i samo ako x sadrzZi
Sest elemenata (grana).

Ime od z sadrzi dvije s-jedinice (hiperslova BA) i tri p-jedini-
ce (hiperslova AB), Sto povlac¢i 8, 9 i 10.

(8) Broj "unutarnjih polova" od z je 2(f-e) i broj "unutarnjih
nula" od z je 3(f-e).

(9) Red kompleksnosti ( order of complexity, transient response,
natural frequencies) od ixj je 2(f-e), resp. 3(f-e).
Tako npr. ako je z (I,0)-imitancija, tj. ako se radi o CR-,
resp. RL-dvopolu, onda je red kompleksnosti od ixj jednak
dva, resp. jednak tri. Ako se radi o CL-dvopolu, tj. ako je
z (I,)-imitancija, onda je red kompleksnosti od ix] jednak
Cetiri,resp. jednak Sest.

(10) ixj je kanonski (e,f)-dvopol, ako i samo ako broj temeljnih
krugova (broj suvislosti, prvi Betti broj) je dva i broj te-
meljnih rezova(fundamental cut-set) u grafu cd x nakon iden-
tifikacije Cvorista i1, j je tri, resp. ixj je kanonski
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(?,i)~dvopol, ako i samo ako broj temeljnih krugova u grafu
od x je tri i1 broj temeljnih rezova u grafu od x nakon ide-
ntifikacije ¢voriSta 1, j je dva.

(11) Postoje dvadeset dva i samo dvadeset dva po " algebarskoj
formi” (u smislu poglavlja 2.7) razlicita kanonska m-poli-
noma u koje se ime od z moze dekomponirati i to

ABABAB A~ (B~ (AN(BNAB)) =A~ (B~ AB " AB)

A (B ~ (AB ~ BA)) =A~ (B " (AB r. A B))=
A~ (BA A~ (B n AB)) A~ ((BA ~ B) ~ AB)
A'-'(BA'-" BA~B) A W((BA ~ B) A A) v, B)=
AN (B " (A~BA) ~B) =A~ (BA n AB) v B)

AB ~ (A~ (B~ AB)) = AB~ (AB " BA) =
AB N AB N AB AB ~ ((AB ~ A) ™ B)
(AB ~ A) ~ (B ~ AB) (AB~AA) " ba” b =
(AB ~ AB) v, BA (AB ~ (A ~ BA)) ~ B

(AB ~ AB A~ A) A B ((A~BA ~B) A~ A) B=
(A~ (B "~ AB) " A wB = (((AB ~ A) ~ B) ~AANB

sto implicira 12 i 13.

(12) z se moze rastaviti, tofno na dvadeset dva, netrivijalno ra-
zna nacina, u serijsko-paralelnu sumu od Sest generatorskih
imitancija i to u korespodenciji sa m”™-polinomima iz (11).
Tako npr. u vezi sa prvim m~-polinomom iz (11), vrijedi: po-
stoje pozitivni, realni brojevi k», k2» k™ k», k™ i kg tak-
vi da je

z = kn"se + (k2SF + (k”"se + (k"s™ + (k”"se + kgS”™)))) =

k-,s +

k2s k,,Se +

k.S~ kc-8® + KYs
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(13) Ako je z impedancija od ixj, onda ixj je kanonski,serijsko-
paralelni (e,f)-dvopol, ako i samo ako m-graf od x pripada
jednom od slijede¢a dvadeset dva skupa m-grafova:




10

11

14

16

17

Ae ,f

At
(ab)”

Be,f

Bt
(ba)™

(BA)ef

°P

CS

Cb

GLOSARIJ m-SIMBOIIA

(i) subatom (primitivni simbol) sistema M

(ii) j a k

j 1 k povezani su a-putem
u m-grafu Xx.

m~™-atom. m~-slovo.

skup A-generatora t"~-strukture

skup m~-dvopola dijametra A

skup m~-dvopola dijametra ab

skup p-jedinica t strukture

(i) subatom (primitivni simbol) sistema M

(ii) j b k

j 1 k povezani su b-putem
u m-grafu x.

m”~-atom. m~-slovo.

skup B-generatora tei,-strukture

skup m”~-dvopola dijametra B

skup m~-dvopola dijametra ba

skup s-jedinica t~-strukture

x Cpy

X c8y

X je neposredni p-prethodnik od y

X je neposredni s-prethodnik od y

suvislost, resp. broj temeljnih petlji grafa

m-grafa # .

a-suvislost,
m-grafa

b-suvislost,
m-grafa,

resp. broj temeljnih a-petlji

resp. broj temeljnih b-petlji

D266

D133

D310

D328

D136

D265
D7

D134

D311

D327

D135

D71

D70

D278

D282

D283

293
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18 d d(x) :: desni zavrSetak, resp. svrSetak od x
(i) svrSetak m-broja DII
(ii) m-valuacija svrSetka imitanci je D141

(iii) d(jxk) = a k povezani su a-putem

joi

u m-grafu x.
j

u

d(jxk) =b I k povezani su b-rezom

m-grafu X. D263
19 3 dual svrSetka m-broja D13
20 4t (i) t-svrSetak m”-polinoma D116
(ii) t-svrsetak imitancije D167
21 3t dual t-svrSetka m~”-polinoma D118
2 D (i) Operator dualnosti sistema M D29
(ii) operator dualnosti m.-strukture D126
(1ii) autoizomorfizam dualnosti tep-struktura D155
23 Dp permutacija dualiteta dvogeneratorskih imitancija D159

24 skupovi dualnih simbola za prirodne brojeve u de-
kadskom brojevnom sistemu D101
25 E (i) primitivni simbol m-topologije D183
(ii) Ex :: skup grana m-grafa x D185

(1ii) E :: skup imena grana imenovane elektri-
X Cke mreze Xx. D335

26 Ea Ea(x)

skup grana karaktera A, resp. A-grana
u m-grafu x. D187

27 Eab

skup grana karaktera ab, resp. ab-grana,
resp. praznih grana u m-grafu x. D187

28 Bba BEba(x)
skup grana karaktera ba, resp. ba-grana,
resp. kratkospojnih grana, resp. geome-
trijskih grana u m-grafu x. D187

29 Eg Eg(x)
skup grana karaktera B, resp. B-grana
u m-grafu Xx. D187



50

51

52

55

&

&

57

58

59

EL

E1P

E18

fk

Fime Cuv.
Fime gr.
I:mreia

Fper

L3¢ - skup grana u elektrickoj mrezi x.

EE£(x) :: skup grana sa kapacitetom u pasi-
vnoj elektrickoj mrezi Xx.

E£(X) :: skup grana sa induktivitetom u pa-

sivnoj elektrickoj mrezi x.

Ep(x) :: skup grana sa otporom u pasivnoj
elektrickoj mrezi x.

Elp(x,y) :: p--eliminanta imitancija x i y.
Els(x,y) :: s-eliminanta imitancija x i y.
Ela(ixk) :: eliminanta admitancije elekt-

rickog dvopola ixk
(i) fk(x,y) :: nadoveza m”™-polinoma x i y
(1) fk(x,y) :i nadoveza m-grafova x i y

pomocna relacija za opravdanje uvodenja ope-
racije s-zbrajanja m-brojeva

pomocna relacija za opravdanje uvodenja ope-
racije p-zbrajanja m-brojeva

. < \ :: drugi Clan imenovane elek-
Fime Cv.( tricke mreze Xx
F. \ :: trecé¢i €lan imenovane elek-
ime gr.( . tricke mreze X

% Ak prvi C¢lan imenovane elek-
Fmreza”x tricke mreze Xx
Fper(X) perioda (torzija) m-skupa X.
g(x) :: graf m-grafa x.

skup m-grafova
skup m~-grafova
skup m~-grafova

skup m-dvopola
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D552

D344

D150

D149

D342

D125
D193

D37

D334

D334

D334

D85

D190

D184

D305

D314

D260
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49

50

o1

52

&

g

&

57

58

59

60

61

62

&

65

2Gs-p
2G0
2Gt

2Gtkan
20t 0

2G"el

2G"N0

Jp
Js

skup neseparabilnih m”~-dvopola

skup serijsko-paralelnih m-dvopola

skup klasa ostataka m-dvopola modulo nula
skup m~-dvopola

skup kanonskih m”-dvopola

skup klasa ostataka m”-dvopola modulo nula
skup m~-dvopola

skup klasa ostataka m”-dvopola modulo jedan
skup klasa ostataka m”-dvopola modulo nula

h(x) :: defekt (spol, rod) od x
(1) defekt m-broja

(i1) defekt imitancije

(i11) defekt m-dvopola

dual defekta m-broja

(1) operator inverznosti m-brojeva

(ii) Ix(e) = {j»k} :: e je incidentno sa
j 1.k u m-grafu x.

(i) 1 ;. funkcija incidencije u imeno-

vanoj elektrickoj mrezi x

I* :: funkcija incidencije u elektric¢koj
mrezi

p-jezgra m-broja
s-jezgra m-broja

operator komplementarnosti m-brojeva

I(x) :: lijevi zavrSetak, resp. pocCetak od x

(i) pocetak m-broja
(11) m-valuacija pocCetka imitancije

(i) I(xk) =a :: jJ i k povezani su a-rezom

u m-grafu x.

I(jxk) =b :: j 1 k povezani su b-putem

u m-grafu x.

D354

D264

D295

D506

D507

D509

D515

D517

D526

D144
D285

D56

D32

D185

D356

D332

D31

DIO
D140

D267



66

67

68

69

70

71

72

73

74

75

76

77

78

79

J/C

M(0)

Mooz
IVheg

IVhepoz

1(x) :: dual poCetka od x

(i) t-pocCetak polinoma
(i1) t-pocCetak imitancije

dual t-poCetka m”-polinoma

skup m-istina i m-neistina kongruentnih
modulo *

m~-logika periode (reda) *

(i) skup m-brojeva. Skup m-rijecCi
(iit) M i m-skup periode nf resp. reda n

skup rijec¢i formiran alfabetom {a,b}

m-struktura

skup m”-polinoma

m~-struktura

m-Zeroid

m~-struktura

skup klasa ostataka m-brojeva modulo n

m-sistem klasa ostataka m-brojeva modulo n
skup s-nenegativnih m-brojeva

skup p-nenegativnih m-brojeva

skup s-negativnih m-brojeva

skup p-negativnih m-brojeva

skup pozitivnih m-brojeva. Skup m”-brojeva
skup negativnih m-brojeva

skup nepozitivnih m-brojeva
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87

88

89

90

99

100

101

102

103

104

IVlweneg

cN2GO0

N?

2N

NI, |
NI, O
NO, I

2N, 1
2N, 0
2NO,1

2Ner(kan)

2Nef(nedegq)
0]

o1

0Y-~1

skup nenegativnih m-brojeva

m-struktura klasa ostataka m-dvopola
modulo nula

Mod (M ) :: modul nad u, m-siatema
u * reda *

skup brojki dualizirane aditivne
pourgrupe prirodnih brojeva

1
dualizirana aditivnaf)'ogFupa prirodnih
brojeva

skup imenovanih pasivnih elektric¢kih
mreza

skup pasivnih elektrickih dvopola
skup elektrickih CL-mreza
skup elektrickih CR-mreza
skup elektrickih RL-mreza

skup neseparabilnih elektrickih CL-dvo-
pola

skup neseparabilnih elektrickih CR-dvo-
pola

skup neseparabilnih elektrickih RL-dvo-
pola

skup kanonskih (e,f)-dvopola

skup nedegeneriranih (e,f)-dvopola

0 ~(x) :: m-graf elektricke (e,f)-mre-
e’'f ze X
O”6’t‘1»(ixk) :: skup izomorfnih nedegeneri-

ranih elektrickih (e,f)-dvopola iznad
m-grafa ixk

OT~Cz) :: prostor m-dvopola nad skupom
nedegeneriranih elektri¢kih dvopola admi-
tanci je z

D333

D338

D346

D347

D348

D349

D349

D349

D366

D357

D353

D358

D364
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106

107

108

109

110

111

112

113

114

115

116

°Y jedn

0z”1

0Zk L

pd

pa

p.ld
p.ldA(Mt)

p.1dB(Mt)

pX

pi

*1

OYkONn(z) :: prostor m-dvopola nad skupom
kanonskih elektri¢kih dvopola admitancije z

Oz ~(z) :: prostor m-dvopola nad skupom
nedegeneriranih elektrickih dvopola impedan-
cije z

OzZkn~Cz) :: prostor m-dvopola nad skupom

kanonskih elektrickih dvopola impedancije z

PMX), resp. XP :: desni sljedbenik od X
(1) d-sljedbenik m-broja
(i1) d-sljedbenik m”-polinoma

PE(X), resp. xXP” :: desni prethodnik od X
(i) d-prethodnik m-broja
(ii) d-prethodnik negeneratorske imitancije

(1) d-sljedbenik n-tog reda m-broja
(11) d-prethodnik n-tog reda m-broja
(1i1) d-sljedbenik n-tog reda m~”-polinoma
(iv) d-prethodnik n-tog reda imitancije

p.ld (M ) :: p-ideal nad u m-sistema reda *
p.ideal m~-strukture nad A
S
p.ideal m”-strukture nad B
P1(X), resp. Px :: lijevi sljedbenik od x
(1) 1-sljedbenik m-broja
(i1) 1-sljedbenik m”-polinoma
PMX), resp. P»x :: lijevi prethodnik od X

(i) 1-prethodnik m-broja
(ii) 1-prethodnik negeneratorske imitancije

(1) 1-sljedbenik n-tog reda m-broja
(i1) 1-prethodnik n-tog reda m-broja
(1i1) 1-sljedbenik n-tog reda m”-polinoma
(iv) 1-prethodnik n-tog reda imitancije
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D370

D363

D369

D16
D120

D22
D169

D18
D20
D122
D171

D89

D114

D15
D119

D21
D168

D17
D19
D121
D170
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117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

PO

ap

%

izomoriizam t~-strukture

permutacija identiteta dvogeneratorekih
Imitancija

(1) ljuska m-broja
(i1) ljuska imitancije
(iii) ljuska m-dvopola
gx :: ljuska m-grafa x

q(x)i: dual ljuske m-broja x

(1) p-ljuska m-broja
(i1) p-ljuska m-dvopola

(1) s-ljuska m-broja
(ii) s-ljuska m-dvopola

gn(x) i ljuska m”™-polinoma Xx

(1) g-sljedbenik m-broja
(i1) g-sljedbenik m”-polinoma

g-prethodnik m-broja

(i) g-sljedbenik, resp. g-prethodnik
n-tog reda m-broja

(i1) g-sljedbenik n-tog reda m.-poli-
noma

kvazi uredenje m-brojeva

dualno kvazi uredenje m-brojeva

(i) reciprocCni izomorfizam t-struktura

(i1) rang (broj temeljnih rezova) grafa
m-grafa

dualno reciprocni izomorfizam t-struktura

permutacija reciprociteta dvogeneratorekih
Imitancija

permutacija dualnog reciprociteta dvogene-
ratorskih imitancija

D154

D158

D14
D142
D269

D30

D271

D45
D270

DUO

D25,D26
D108

D27,D28

D23,D24
D109
D41
D42
D156
D279

D157

D160

D161



133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Ri

Sel .mreza

s.Id

s. 1dA (M©)
s. 1dB (Mt)

Slog

m

RQ() :: broj temeljnih a-rezova (a-rang)

m-grafa X

RM(X) :: broj temeljnih b-rezova (b-rang)

m-grafa X

sljedbenicke funkcije dualnih Peanovih
sistema

xeSel .mreza N *rJlaPa8IVna elektrléka

s.1d,,(M;,) :: s-ideal nad u m-sistema re-
uZy da

s-ideal m-strukture nad A
s-ideal m™-strukture nad B

Slog(x) :: slog parametara kanonske
s-forme iImitancije X

skup m-skupova

m-sist.{a,b}skup m-sistema nad {a,b}

m-subgr .

e,T

Tef(9)

y€ESm-subgr.(X) 1: y <& m-subgraf od X
skup dvogeneratorskih imitancija

skup (e,f)-imitanci ja

teE-struktura

skup klasa ostataka (e,f)-imitancija
modulo nula

(1) broj cCvorista m-grafa

(i) broj Cvorista imenovane elektricke
mreze

(O) primitivni simbol (skup Cvorista)
m-topologi je

(i1) Vx @ skup Cvorista m-grafa x

(i) V o skup imena_CvoriSta imenova-
X ne elektriCke mreze Xx.

301

D280

D281

D101

D331

D88

D113

D112

D145

D81

D82

D191

D131

D130

D132

D174

D186

D365

D183
D185

D335
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150

151

152

153

14

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

JT

Ze f

z'1

zkan

zo; N f

rm

skup CvorisSta u elektrickoj mrezi x
valuacija ljuske dvogeneratorske imitancije
valuacija svrSetka imitancije

valuaeija pocCetka imitancije

skup rijec¢i m-topologije

Y(ixk) :: admitancija elektrickog dvopola ixk

Y~~(z) :: skup nedegeneriranih elektrickih dvo-
pola admitancije z

funkcija admitancije CL-dvopola
funkcija admitancije CR-dvopola
funkcija admitancije RL-dvopola

y7™ (z) :: skup kanonskih elektrickih dvopola
an admitancije z

prostor admitancije nad skupom izomorfnih ne-
degeneriranih elektri¢ckih (e,f)-dvopola

Z(ixk) :: impedancija elektrickog dvopola ixk

funkcija impedancije (e,f)-dvopola, tj. CL- ,
resp. CR- , resp* RL-dvopola

Z-1(z) :: skup nedegeneriranih elektrickih
dvopola impedancije z

Z:1 (z)i: skup kanonskih elektri¢kih dvopo-
an la 1mpedancije z

prostor impedancije nad skupom izomorfnih
nedegeneriranih elektrickih (e,f)-dvopola

skup Cetiriju osnovnih permutacija m-brojeva

skup Cetiriju osnovnih permutacija dvogene-
ratorskih imitancije

6(x) :: dijametar m-prostora nad m-grafom x

D332

D143

D139

D139

D258

D340

D362

D356

D356

D356

D368

D360

D339

D355

D361

D367

D359

D162

D289



170

171

172

173

174

175

176

177

178

179

180

A

Sb
Sa

EB

n2G

9i

(1) permutacija dualiteta u dualiziranoj
aditivnoj grupi prirodnih brojeva

(i) A(ixk) :: determinanta matrice admi-
tancije Cvorista elektricke mreze X
sa referentnim c¢voristem i

(ii1) An(ixk) :: kofaktor (1,1) determinan-
te matrice admitancije CvoriSta elekt-
fti\f;}(e mreze X sa referentnim cvoristem

(i) broj nepraznih grana m-grafa

(i1) broj grana imenovane elektricke mreze
broj A-grana m-grafa

broj ab-grana (praznih grana) m-grafa x

broj ba-grana (kratkospojnih grana) m-grafa x

broj B-grana m-grafa x

(i) $(x) :: ime (e,f)-imitancije X

(i) $Ix| ime klase ostataka (e,f)-imitan-
cija modulo nula

(iii) $(jxk):: razmak Cvorista "jwi "k" u

m-grafu x
& . m-pro8tor nad m-grafom x
(iv) $]ixk]:: ime klase ostataka m-dvopola

modulo nula

skup (e,f)-imitancija imena X

$2q(x) == skup m-dvopola imena Xx

X Oy i x 1 y su kongruentni modulo nula
X Ony :: x i y su kongruentni modulo n
(1) relacija kongruencije modulo n sistema M

(ii) relacija kongruencije modulo nula
tefE-strukture

(iii) relacija kongruencije modulo nula
m-topologije

relacija kongruencije modulo jedan m-topologije

303

D102

D341

D341

D189
D365

D138

D188

D188

D188

D180

D181

D286
D286

D296

D182

D297

D76

D172

D293

D292
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181 x
182 XP
183 Xs
184 «t
185 X|
186
187 =
188 a
189 “b
1901 n
1902 ng
191

Pp
192 RS
193 I

(1) o-duljina m-broja

(ii) broj pribrojnika u C,- i C/-formi
m”-polinoma

(111) red matrice imitancije

(1) p-duljina m-broja
(ii) "stupanj brojnika" kanonske s-forme
imitancije

(iii) broj "temeljnih rezova" m-grafa

(i) s-duljina m-broja

(ii) "stupanj nazivnika" kanonske s-forme
imitancije

(iii) suvislost (broj "temeljnih petlji" )
m-grafa

(i) broj simbola za operacije zbrajanja

u kanonskoj formi m”-polinoma

(ii) broj "unutarnjih polova i nula" imitancije

broj neophodnih pari zagrada uF -, i F -formi

m~-polinoma p

p(x) :: matrica imitancije Xx

*(x) :: broj maksimalno povezanih subgrafova
grafa m-grafa x

na(x) :i broj maksimalno povezanih a-subgrafo-
va u m-grafu x

*b(x) broj maksimalno povezanih b-subgrafo-
va u m-grafu x

n(x) :: karakteristicni polinom imitancije x

partitivni skup, skupa m-grafova

03169 K p-rastav m-broja X

B(x) :: s-rastav m-brojaX

sljedbeni¢ka funkcija dualizirane aditivne
grupe prirodnih brojeva

D57

D124
D147

D148
D287

D49

D148

D284

D123
D146

DUO

D166

D273

D275

D277
D151

D291

D52

D51

D102



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

+l

*2

u)

°e,f

QP

Qp (e, f)
°S

°3 (e, f)

£2(0)

°2Ge
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operator o-formiranja rijec¢i m-topologije D209
operator l1l-formiranja rijeCi m-topologije D210
operator 2-formiranja rijeci m-topologije D211
\KW) :: skup m-sistema nad skupom simbola W DI
A ,B}i: skup m~-struktura generiran

m~™-atomima D103
ux(e) karakter grane e u x
(1) karakter grane u m-grafu D185
(i1) karakter grane u CL-mrezi D350
(iii) karakter grane u CR-mreZi D351
(iv) karakter grane u RL-mrezi D352
baza sistema M. Skup m-atoma, resp. m-slova D4
skup generatorskih (e,f)-imitanci ja D127
skup m-atoma (mO-slova) sistema M. Skup nula
(s-nula i p-nula) m-strukture D9
p-baza m-strukture D48
skup p-ireducibilnih (e,f)-imitancija D165
s-baza m-strukture D47
skup s-ireducibilnih (e,f)-imitancija D164
(i) skup m™-atoma (m~-slova) sistema M D8
(ii) skup generatora m~-strukture D105
skup primitivnih m”.-polinoma D106
0(0 ) :: baza m-sistema klasa ostataka

m-brojeva modulo n D79
baza m-strukture klasa ostataka m-dvopola
modulo nula D301
XA Yy = Xy :: y nadovezano na X D2,D3
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212 S dualno s D5
213 * (1) kompozicija (relativni produkt) osnovnih
permutacija m-brojeva D34
(ii) kompozicija osnovnih permutacija dvogene-
ratorskih imitancija D163
214 (1) operacija serijskog zbrajanja m-brojeva D36
(ii) s-operacija generiranja m,-strukture D104
(iii) s-zbrajanje u skupu klasa ostataka
(e,f)-imitancije modulo nula D178
(iv) s-nadovezivanje u skupu klasa ostataka
m-dvopola modulo nula D302
(v) s-nadovezivanje u skupu klasa ostataka
m~-dvopola modulo nula D312
(vi) s-nadovezivanje u skupu klasa ostataka
m”-dvopola modulo nula D329
215 N (i) operacija paralelnog zbrajanja m-broje-
va D33
(ii) p-operacija generiranja m.-strukture D104
(i1i) p-zbrajanje u skupu klasa ostataka
(e,f)-imitancija modulo nula D179
(iv) p-nadovezivanje u skupu klasa ostataka
m-dvopola modulo nula D303
(v) p-nadovezivanje u skupu klasa ostataka
m~-dvopola modulo nula D313
(vi) p-nadovezivanje u skupu klasa ostataka
m~-dvopola modulo nula D330
216 <alf uredajna relacija subalfabeta sistema M D40
217 51 +p operacije neprave dekompozicije m-strukture
u tenzorski produkt reSetke (lattice) i
cikli¢ke grupe D53sD>4
218 <s xs Y X je s-manje od y, resp.
y je s-vecCe od X D66
219 < y :: X je p-manje od y, resp.
p x <P y je p-veée od x D67
220 5 « <y I X je s-manje ili jednako y D68
221 je < ip Y X je p-manje ili jednako y D69
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222 [ ] x,yl ;. zatvoreni s-interval m-brojeva
: Js od x do vy D72
223 3 jxiyl . zatvoreni p-interval m-brojeva
[ 3p p od x do y D73
224 < X <y I X je manje od y, resp. y je vece
od x D74
225 < X <y = X je manje ili jednako y D75
226 i | IX] ;. klasa ostataka m-brojeva modulo n,
sa reprezentantom klase x D77
227 To m-istina beskonacnog reda (periode nula) D90
228 ¢ m-neistina beskonac¢nog reda (periode nula) D91
229 _ . m-negacija D92
230 &n m-konjukcija D93
231 \ym m-disjunkcija D4
232 m m-implikacija D95
233« am m-ekvivalenci ja D96
234 o,tr inicijalni elementi dualnih Peanovih sistema D101
235 + (1) operacija s-zbrajenja u dualiziranoj adi'
tivnoj grupi prirodnih brojeva D102
(i1) operacija s-zbrajanja u skupu funkcija
kompleksne varijable D128
n .. . . i
236 + (i) operacija p-zbrajanja u dualiziranoj adi-
tivnoj grupi prirodnih brojeva D102
(i1) operacija p-zbrajanja u skupu funkcija
kompleksne varijable D129
237 V J oxi X0 + X1 + eee + Xn D137
238 A A NNl T x D138
i“o 1 Xxo + X1 + n



308

239

240

241

242

243

244

245

246

247

243

249

250

251

252

1 lo

()

A" . izomorfizam t strukture i
t,-strukture

gh
/4 g,h== dualni izomorfizam t strukture
ef i t .mstrukture

klasa ostataka (e,f)-imitanci,ja

Ix]o modulo nula

X« y I X 1Yy suizomorfni
(1) izomorfizam m-grafova
(ii) izomorfizam m-dvopola

skup m-grafova koji sadrze samo jedno cCvori-
Ste i nemaju niti jedne grane

skup m-grafova koji sadrze samo jedno Cvori-
Ste i samo jednu singularnu A-granu

skup m-grafova koji sadrze dva Cvorista i
jednu nesingularnu ba-granu

skup m-grafova koji se sastoje od paralelne
kombinacije jedne B- i jedne A-grane

serijska kombinacija disjunktnih m-grafova
X 1y, povezivanjem Kkratkospojnom granom

¢vorista "k" u x i CvoriSta "n" uy.
i(x)k, resp. ixk

(1)  m-dvopol

(ii) elektricki dvopol

xi>J :: "identifikacija” Cvorista "i"
m-grafa x sa Cvoristem - "j"
x* .. operacija uklanjanja praznih grana

iz m-grafa x

lil :: skup CvorisSta u m-grafu x povezanih

ax a-putem sa "j

l,jlb :: skup CvoriSta u m-grafu x povezanih

X b-putem sa "j

D152

D153

D173

D192
D261

D194

D198

D205

D243

D256

D259
D337

D263

D272

D274

D276



253

254

255

256

257

258

259

260

261

262

263

1

T1

J-1

It

I jxk] . skup m-dvopola kongruentnih modulo
nula sa jxk

lixk]”™ i skup m”-dvopola kongruentnih modu-
lo nula sa jxk

lixk]” :: skup m”~-dvopola kongruentnih modu-
lo jedan sa jxk

skup m”~-dvopola sa ljuskom jednakom ba

skup m”~-dvopola sa ljuskom jednakom ab

negacija u 20M0”, tj. u skupu klasa ostataka
m~-dvopola modulo jedan

konjukcija u 20007

disjunkcija u 260"

implikacija u 2G6™"0"

ekvivalencija u 260"

lixk]™ :: skup m”~-dvopola kongruentnih modu-
lo nula sa jxk
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D294

D303

D316

D318

D319

D320

D321

D322

D323

D324

D325



Podaci o piscu knjige

Miro Sare, inZenjer elektrotehnike, roden je u Sibeniku 1918.
Srednju 8kolu je zavrdio u rodnom mijestu, a studirao na Tehnic-
kom fakultetu u Zagrebu, na kojem je i diplomirao 1951. godine.
Od 1948. zaposlen je na Zavodu za osnove i mjerenja u slaboj
struji, Tehnickog, kasnije Elektrotehnickog fakulteta u Zagrebu,
na kojem i sad obucava iz predmeta Elektronicka mjerna teh-
nika. Rade¢i u tom podrucju, otkrio je u proljeéu 1957. godine
mogucénost reprezentacije strukture elektrickih mreza linearnim
kombinacijama triju simbola, koje je nazvao m-brojevima. Ogra-
ni¢ivSi se samo na dvogeneratorske elektricke mreze, ubrzo je
naSao glavne zakonitosti mt-strukture, iz kojih je razvio Algebru

dvogeneratorskih imitancija, Sistem M i m-Topologiju, onako kako
su i prikazane u ovoj knjizi.
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